对GEDI雷达数据预处理的代码
时间: 2023-05-28 18:06:47 浏览: 190
由于GEDI雷达数据处理涉及到多个步骤,以下提供了一些常用的预处理代码:
1. 解压GEDI数据文件
```python
import h5py
# 读取GEDI数据文件
with h5py.File('GEDI01_B_2019321195108_O01754_T04276_02_003_01.h5', 'r') as f:
# 获取数据集
dataset = f['BEAM0000']['geolocation']['latitude_bin0']
# 读取数据
data = dataset[:]
```
2. 选择感兴趣的轨道和波束
```python
import h5py
# 读取GEDI数据文件
with h5py.File('GEDI01_B_2019321195108_O01754_T04276_02_003_01.h5', 'r') as f:
# 获取数据集
dataset = f['BEAM0000']['geolocation']['latitude_bin0']
# 选择感兴趣的轨道
track = 4276
data = dataset[track]
# 选择感兴趣的波束
beam = 'BEAM0000'
data = f[beam]['geolocation']['latitude_bin0'][track]
```
3. 滤波和降采样
```python
import numpy as np
import scipy.signal
# 滤波器参数
fs = 20 # 采样频率
f_cutoff = 0.1 # 截止频率
b, a = scipy.signal.butter(4, f_cutoff/(fs/2), 'lowpass')
# 读取GEDI数据文件
with h5py.File('GEDI01_B_2019321195108_O01754_T04276_02_003_01.h5', 'r') as f:
# 获取数据集
dataset = f['BEAM0000']['geolocation']['latitude_bin0']
# 选择感兴趣的轨道和波束
track = 4276
data = f['BEAM0000']['geolocation']['latitude_bin0'][track]
# 滤波
data_filtered = scipy.signal.filtfilt(b, a, data)
# 降采样
data_downsampled = scipy.signal.resample(data_filtered, len(data_filtered)//2)
```
4. 校正时间偏移
```python
import h5py
import numpy as np
# 读取GEDI数据文件
with h5py.File('GEDI01_B_2019321195108_O01754_T04276_02_003_01.h5', 'r') as f:
# 获取数据集
dataset = f['BEAM0000']['geolocation']['latitude_bin0']
# 选择感兴趣的轨道和波束
track = 4276
data = f['BEAM0000']['geolocation']['latitude_bin0'][track]
# 获取时间偏移量
t_ref = f['/ancillary_data/gps_epoch'][()]
t_poe = f['/ancillary_data/profile_time'][:]
t_ref = np.array([t_ref]*len(t_poe))
t_offset = f['/ancillary_data/delta_time'][:]
# 校正时间偏移
t_corrected = t_ref + t_poe + t_offset
```
阅读全文