ACGAN自动生成动漫头像PyTorch代码和 数据集

时间: 2024-06-09 10:04:32 浏览: 210
以下是ACGAN自动生成动漫头像的PyTorch代码和数据集: ## 数据集 我们将使用动漫头像数据集,该数据集包含10,000个大小为64x64的图像。您可以从以下链接下载数据集: https://drive.google.com/file/d/1GhK8g-hPZ7z4mC1J1l8iYJ4Qqy1aY79f/view 将下载的文件解压缩到名为“anime”的文件夹中。 ## PyTorch代码 ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torchvision import transforms from torchvision.utils import save_image from PIL import Image import glob # 超参数 batch_size = 128 lr = 0.0002 latent_dim = 100 num_classes = 10 num_epochs = 200 # 设备 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 转换图像 transform = transforms.Compose([ transforms.Resize((64, 64)), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) # 动漫头像数据集 class AnimeDataset(Dataset): def __init__(self, root_dir, transform=None): self.root_dir = root_dir self.transform = transform self.images = glob.glob(root_dir + '/*.png') def __len__(self): return len(self.images) def __getitem__(self, idx): img_path = self.images[idx] image = Image.open(img_path) if self.transform: image = self.transform(image) return image # 生成器 class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.label_emb = nn.Embedding(num_classes, num_classes) self.model = nn.Sequential( nn.Linear(latent_dim + num_classes, 128), nn.BatchNorm1d(128, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(128, 256), nn.BatchNorm1d(256, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 512), nn.BatchNorm1d(512, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 1024), nn.BatchNorm1d(1024, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Linear(1024, 64*64*3), nn.Tanh() ) def forward(self, noise, labels): gen_input = torch.cat((self.label_emb(labels), noise), -1) img = self.model(gen_input) img = img.view(img.size(0), 3, 64, 64) return img # 判别器 class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.label_emb = nn.Embedding(num_classes, num_classes) self.model = nn.Sequential( nn.Linear(num_classes + 64*64*3, 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 1), nn.Sigmoid() ) def forward(self, img, labels): img = img.view(img.size(0), -1) d_in = torch.cat((img, self.label_emb(labels)), -1) validity = self.model(d_in) return validity # 损失函数 adversarial_loss = nn.BCELoss() auxiliary_loss = nn.CrossEntropyLoss() # 初始化生成器和判别器 generator = Generator().to(device) discriminator = Discriminator().to(device) # 优化器 optimizer_G = optim.Adam(generator.parameters(), lr=lr) optimizer_D = optim.Adam(discriminator.parameters(), lr=lr) # 动漫头像数据集 anime_data = AnimeDataset('anime', transform=transform) dataloader = DataLoader(anime_data, batch_size=batch_size, shuffle=True) # 训练模型 for epoch in range(num_epochs): for i, imgs in enumerate(dataloader): # 真实图像标签为1 valid = torch.ones((imgs.size(0), 1)).to(device) # 假的图像标签为0 fake = torch.zeros((imgs.size(0), 1)).to(device) # 训练判别器 optimizer_D.zero_grad() # 真实图像损失 real_imgs = imgs.to(device) real_labels = torch.randint(0, num_classes, (imgs.size(0),)).to(device) d_loss_real = adversarial_loss(discriminator(real_imgs, real_labels), valid) # 生成器生成的图像损失 noise = torch.randn((imgs.size(0), latent_dim)).to(device) fake_labels = torch.randint(0, num_classes, (imgs.size(0),)).to(device) fake_imgs = generator(noise, fake_labels).detach() d_loss_fake = adversarial_loss(discriminator(fake_imgs, fake_labels), fake) # 总损失 d_loss = 0.5 * (d_loss_real + d_loss_fake) d_loss.backward() optimizer_D.step() # 训练生成器 optimizer_G.zero_grad() # 生成器生成的图像损失 noise = torch.randn((imgs.size(0), latent_dim)).to(device) fake_labels = torch.randint(0, num_classes, (imgs.size(0),)).to(device) fake_imgs = generator(noise, fake_labels) g_loss = adversarial_loss(discriminator(fake_imgs, fake_labels), valid) g_loss.backward() optimizer_G.step() if i % 50 == 0: print('[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]' % (epoch, num_epochs, i, len(dataloader), d_loss.item(), g_loss.item())) # 保存生成器的图像 if epoch % 10 == 0: save_image(fake_imgs.data[:25], 'images/%d.png' % epoch, nrow=5, normalize=True) ``` 您可以将上述代码保存为“acgan.py”文件并在命令行中运行以下命令以训练模型: ``` python acgan.py ``` 注意:训练可能需要一段时间,具体取决于您的计算机性能。您可以通过调整超参数来加速训练,例如减少批量大小或减少训练时期。同时,您还可以在训练过程中查看生成的图像,这些图像将保存在名为“images”的文件夹中。
阅读全文

相关推荐

最新推荐

recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

在本教程中,我们将探讨如何使用PyTorch框架来实现条件生成对抗网络(CGAN)并利用MNIST数据集生成指定数字的图像。CGAN是一种扩展了基础生成对抗网络(GAN)的概念,它允许在生成过程中加入额外的条件信息,如类...
recommend-type

pytorch学习教程之自定义数据集

在PyTorch中,自定义数据集是深度学习模型训练的关键步骤,因为它允许你根据具体需求组织和处理数据。在本教程中,我们将探讨如何在PyTorch环境中创建自定义数据集,包括数据的组织、数据集类的定义以及使用`...
recommend-type

PyTorch版YOLOv4训练自己的数据集—基于Google Colab

在本文中,我们将探讨如何使用PyTorch在Google Colab上训练YOLOv4模型,以便处理自定义数据集。Google Colab是一个强大的在线环境,为机器学习爱好者和研究人员提供了丰富的资源,特别是免费的GPU支持,这对于运行...
recommend-type

pytorch实现mnist数据集的图像可视化及保存

`torch`是PyTorch的核心库,`torchvision`包含了数据集和图像处理的模块,`torch.utils.data`用于数据加载,`scipy.misc`用于图像保存,`os`用于文件操作,而`matplotlib.pyplot`用于图像显示。 定义`BATCH_SIZE`为...
recommend-type

pytorch 语义分割-医学图像-脑肿瘤数据集的载入模块

PyTorch 提供了 `torch.utils.data.Dataset` 类,用于定义自己的数据集类,以便高效地处理大量数据。在这个场景中,我们需要处理一个由多个病人数据组成的脑肿瘤数据集,每个病人数据包含多张原始图像和对应的标注图...
recommend-type

海康无插件摄像头WEB开发包(20200616-20201102163221)

资源摘要信息:"海康无插件开发包" 知识点一:海康品牌简介 海康威视是全球知名的安防监控设备生产与服务提供商,总部位于中国杭州,其产品广泛应用于公共安全、智能交通、智能家居等多个领域。海康的产品以先进的技术、稳定可靠的性能和良好的用户体验著称,在全球监控设备市场占有重要地位。 知识点二:无插件技术 无插件技术指的是在用户访问网页时,无需额外安装或运行浏览器插件即可实现网页内的功能,如播放视频、音频、动画等。这种方式可以提升用户体验,减少安装插件的繁琐过程,同时由于避免了插件可能存在的安全漏洞,也提高了系统的安全性。无插件技术通常依赖HTML5、JavaScript、WebGL等现代网页技术实现。 知识点三:网络视频监控 网络视频监控是指通过IP网络将监控摄像机连接起来,实现实时远程监控的技术。与传统的模拟监控相比,网络视频监控具备传输距离远、布线简单、可远程监控和智能分析等特点。无插件网络视频监控开发包允许开发者在不依赖浏览器插件的情况下,集成视频监控功能到网页中,方便了用户查看和管理。 知识点四:摄像头技术 摄像头是将光学图像转换成电子信号的装置,广泛应用于图像采集、视频通讯、安全监控等领域。现代摄像头技术包括CCD和CMOS传感器技术,以及图像处理、编码压缩等技术。海康作为行业内的领军企业,其摄像头产品线覆盖了从高清到4K甚至更高分辨率的摄像机,同时在图像处理、智能分析等技术上不断创新。 知识点五:WEB开发包的应用 WEB开发包通常包含了实现特定功能所需的脚本、接口文档、API以及示例代码等资源。开发者可以利用这些资源快速地将特定功能集成到自己的网页应用中。对于“海康web无插件开发包.zip”,它可能包含了实现海康摄像头无插件网络视频监控功能的前端代码和API接口等,让开发者能够在不安装任何插件的情况下实现视频流的展示、控制和其他相关功能。 知识点六:技术兼容性与标准化 无插件技术的实现通常需要遵循一定的技术标准和协议,比如支持主流的Web标准和兼容多种浏览器。此外,无插件技术也需要考虑到不同操作系统和浏览器间的兼容性问题,以确保功能的正常使用和用户体验的一致性。 知识点七:安全性能 无插件技术相较于传统插件技术在安全性上具有明显优势。由于减少了外部插件的使用,因此降低了潜在的攻击面和漏洞风险。在涉及监控等安全敏感的领域中,这种技术尤其受到青睐。 知识点八:开发包的更新与维护 从文件名“WEB无插件开发包_20200616_20201102163221”可以推断,该开发包具有版本信息和时间戳,表明它是一个经过时间更新和维护的工具包。在使用此类工具包时,开发者需要关注官方发布的版本更新信息和补丁,及时升级以获得最新的功能和安全修正。 综上所述,海康提供的无插件开发包是针对其摄像头产品的网络视频监控解决方案,这一方案通过现代的无插件网络技术,为开发者提供了方便、安全且标准化的集成方式,以实现便捷的网络视频监控功能。
recommend-type

PCNM空间分析新手必读:R语言实现从入门到精通

![PCNM空间分析新手必读:R语言实现从入门到精通](https://opengraph.githubassets.com/6051ce2a17cb952bd26d1ac2d10057639808a2e897a9d7f59c9dc8aac6a2f3be/climatescience/SpatialData_with_R) # 摘要 本文旨在介绍PCNM空间分析方法及其在R语言中的实践应用。首先,文章通过介绍PCNM的理论基础和分析步骤,提供了对空间自相关性和PCNM数学原理的深入理解。随后,详细阐述了R语言在空间数据分析中的基础知识和准备工作,以及如何在R语言环境下进行PCNM分析和结果解
recommend-type

生成一个自动打怪的脚本

创建一个自动打怪的游戏脚本通常是针对游戏客户端或特定类型的自动化工具如Roblox Studio、Unity等的定制操作。这类脚本通常是利用游戏内部的逻辑漏洞或API来控制角色的动作,模拟玩家的行为,如移动、攻击怪物。然而,这种行为需要对游戏机制有深入理解,而且很多游戏会有反作弊机制,自动打怪可能会被视为作弊而被封禁。 以下是一个非常基础的Python脚本例子,假设我们是在使用类似PyAutoGUI库模拟键盘输入来控制游戏角色: ```python import pyautogui # 角色位置和怪物位置 player_pos = (0, 0) # 这里是你的角色当前位置 monster
recommend-type

CarMarker-Animation: 地图标记动画及转向库

资源摘要信息:"CarMarker-Animation是一个开源库,旨在帮助开发者在谷歌地图上实现平滑的标记动画效果。通过该库,开发者可以实现标记沿路线移动,并在移动过程中根据道路曲线实现平滑转弯。这不仅提升了用户体验,也增强了地图应用的交互性。 在详细的技术实现上,CarMarker-Animation库可能会涉及到以下几个方面的知识点: 1. 地图API集成:该库可能基于谷歌地图的API进行开发,因此开发者需要有谷歌地图API的使用经验,并了解如何在项目中集成谷歌地图。 2. 动画效果实现:为了实现平滑的动画效果,开发者需要掌握CSS动画或者JavaScript动画的实现方法,包括关键帧动画、过渡动画等。 3. 地图路径计算:标记在地图上的移动需要基于实际的道路网络,因此开发者可能需要使用路径规划算法,如Dijkstra算法或者A*搜索算法,来计算出最合适的路线。 4. 路径平滑处理:仅仅计算出路线是不够的,还需要对路径进行平滑处理,以使标记在转弯时更加自然。这可能涉及到曲线拟合算法,如贝塞尔曲线拟合。 5. 地图交互设计:为了与用户的交互更为友好,开发者需要了解用户界面和用户体验设计原则,并将这些原则应用到动画效果的开发中。 6. 性能优化:在实现复杂的动画效果时,需要考虑程序的性能。开发者需要知道如何优化动画性能,减少卡顿,确保流畅的用户体验。 7. 开源协议遵守:由于CarMarker-Animation是一个开源库,开发者在使用该库时,需要遵守其开源协议,合理使用代码并遵守贡献指南。 此库的文件名'CarMarker-Animation-master'表明这是一个主分支的项目,可能包含源代码文件、示例项目、文档说明等资源。开发者可以通过下载解压缩后获得这些资源,并根据提供的文档来了解如何安装和使用该库。在使用过程中,建议仔细阅读开源项目的贡献指南和使用说明,以确保库的正确集成和使用,同时也可以参与开源社区,与其他开发者共同维护和改进这一项目。"
recommend-type

5G核心网元性能瓶颈揭秘

![5G核心网元性能瓶颈揭秘](https://www.telecomhall.net/uploads/db2683/original/3X/4/a/4a76a0c1d1594eec2d2f7cad1a004b9f60e3a825.png) # 摘要 随着5G技术的发展和应用,其核心网的性能优化成为了行业关注的焦点。本文首先概述了5G核心网的架构,并对性能瓶颈进行深入分析,识别了关键的性能指标和瓶颈识别方法。通过案例分析,展示了核心网元常见的性能问题及其诊断和解决过程。随后,文章提出了多项性能优化策略,包括网络设计、系统配置调整以及新技术的应用。此外,本文探讨了安全挑战如何影响核心网的性能,