python 如何让3乘3的ndarray变成6乘6的,其中一个格子的值对应采样后四个格子的值,给出代码
时间: 2023-04-01 12:04:48 浏览: 98
可以使用 numpy 库中的 repeat 函数来实现:
import numpy as np
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b = np.repeat(np.repeat(a, 2, axis=), 2, axis=1)
print(b)
输出结果为:
array([[1, 1, 2, 2, 3, 3],
[1, 1, 2, 2, 3, 3],
[4, 4, 5, 5, 6, 6],
[4, 4, 5, 5, 6, 6],
[7, 7, 8, 8, 9, 9],
[7, 7, 8, 8, 9, 9]])
其中 repeat 函数的第一个参数是要重复的数组,第二个参数是重复的次数,第三个参数是重复的轴。这里我们先将原数组在行方向上重复两次,再在列方向上重复两次,即可得到一个 6x6 的数组,其中每个格子的值都对应采样后四个格子的值。
相关问题
import open3d as o3d # 读取点云数据 point_cloud = o3d.io.read_point_cloud("point_cloud.pcd") # 创建Voxel Grid下采样器 voxel_size = 0.1 # 设置立方体格子的大小 downpcd = point_cloud.voxel_down_sample(voxel_size) # 保持下采样后的点云数量为2048 if len(downpcd.points) > 2048: downpcd.points = downpcd.points[:2048] # 保存下采样后的点云文件 o3d.io.write_point_cloud("downsampled_point_cloud.pcd", downpcd) # 可视化结果 o3d.visualization.draw_geometries([downpcd])这段代码如何修改使得体素下采样会保留每个体素方格中随机的点?
要实现体素下采样时保留每个体素方格中随机的点,你可以稍微修改代码如下:
```python
import open3d as o3d
import random
# 读取点云数据
point_cloud = o3d.io.read_point_cloud("point_cloud.pcd")
# 创建Voxel Grid下采样器
voxel_size = 0.1 # 设置立方体格子的大小
downpcd = point_cloud.voxel_down_sample(voxel_size)
# 在每个体素方格中随机选择一个点作为代表点
downsampled_points = []
for voxel_center in downpcd.get_center_points():
voxel_points = []
for p in point_cloud.points:
if o3d.geometry.PointCloud.distance(voxel_center, p) < voxel_size:
voxel_points.append(p)
if voxel_points:
downsampled_points.append(random.choice(voxel_points))
# 创建新的下采样点云
downsampled_pcd = o3d.geometry.PointCloud()
downsampled_pcd.points = o3d.utility.Vector3dVector(downsampled_points)
# 保存下采样后的点云文件
o3d.io.write_point_cloud("downsampled_point_cloud.pcd", downsampled_pcd)
# 可视化结果
o3d.visualization.draw_geometries([downsampled_pcd])
```
在上述代码中,我们使用了 `get_center_points` 方法获取每个体素方格的中心点,并根据体素大小随机选择一个点作为代表点。然后,我们创建了一个新的下采样点云并将随机选择的代表点添加到其中。
请注意,这种方法可能会导致点云形状的变形,因为不再是简单的取体素方格中的第一个点作为代表点。
#include <pcl/point_cloud.h> #include <pcl/io/ascii_io.h> #include <pcl/filters/voxel_grid.h> int main() { // 加载点云数据 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadTXTFile<pcl::PointXYZ>("input_cloud.txt", *cloud); // 创建VoxelGrid对象 pcl::VoxelGrid<pcl::PointXYZ> voxel_grid; voxel_grid.setInputCloud(cloud); voxel_grid.setLeafSize(0.01f, 0.01f, 0.01f); // 设置体素格子大小 // 执行下采样 pcl::PointCloud<pcl::PointXYZ>::Ptr downsampled_cloud(new pcl::PointCloud<pcl::PointXYZ>); voxel_grid.filter(*downsampled_cloud); // 保存下采样后的点云 pcl::io::saveTXTFile<pcl::PointXYZ>("downsampled_cloud.txt", *downsampled_cloud); return 0; }把这段代码变成python语言
要将这段C++代码转换为Python代码,你需要使用Python中的PCL绑定库来实现相同的功能。下面是将代码转换为Python的示例:
```python
import pcl
# 加载点云数据
cloud = pcl.PointCloud()
cloud.from_file("input_cloud.txt")
# 创建VoxelGrid对象
voxel_grid = cloud.make_voxel_grid_filter()
voxel_grid.set_leaf_size(0.01, 0.01, 0.01) # 设置体素格子大小
# 执行下采样
downsampled_cloud = voxel_grid.filter()
# 保存下采样后的点云
downsampled_cloud.to_file("downsampled_cloud.txt")
```
请注意,代码在Python中的实现与C++代码非常相似,只需进行一些语法和函数调用上的转换。在Python中,我们使用`pcl.PointCloud`类来加载和保存点云数据,使用`make_voxel_grid_filter`方法创建VoxelGrid对象,并使用`filter`方法进行下采样。
确保你已经安装了相应的Python绑定库,并按照它们的文档进行正确的配置和安装。
阅读全文