YOLOV8分割tensorRT推理代码,python
时间: 2025-01-18 19:17:05 浏览: 43
使用TensorRT实现YOLOv8图像分割的Python推理代码
为了使用TensorRT加速YOLOv8模型进行图像分割任务,在Python环境中执行推理的过程可以分为几个主要部分。首先,需要准备环境并安装必要的依赖库,包括但不限于tensorrt
、onnxruntime
等工具包。其次,将原始的YOLOv8模型转换成适用于TensorRT优化的形式,通常为ONNX格式文件。最后,编写具体的推理脚本完成从输入图片到最终预测结果(如掩码和边界框)的处理流程。
准备工作与环境搭建
确保已正确配置好支持CUDA计算的GPU设备,并按照官方文档指导安装最新版本的TensorRT SDK及相关组件。对于YOLOv8而言,由于其属于较新的架构设计,可能需额外关注是否有针对该特定版本的支持补丁或更新说明[^1]。
模型转换至ONNX格式
假设已经拥有训练好的YOLOv8权重文件,下一步就是将其导出为通用中间表示形式——ONNX模型。这一步骤可通过调用框架自带的功能来简化操作:
import torch
from ultralytics import YOLO
model = YOLO('path/to/your/yolov8_model.pt') # 加载预训练模型
torch.onnx.export(model, # 导入PyTorch模型对象
torch.randn(1, 3, 640, 640), # 输入张量作为示例数据
'yolov8_segmentation.onnx', # 输出路径名
opset_version=12 # ONNX运算符集版本号
)
上述代码片段展示了如何利用PyTorch内置的方法快速地把YOLOv8模型保存为兼容TensorRT的ONNX格式。
构建TensorRT引擎并与Python集成
有了ONNX格式的模型之后,就可以借助于Polygraphy或其他辅助工具构建高效的TensorRT运行时引擎了。这里提供一段简单的基于trtexec
命令行工具创建TRT引擎的例子:
trtexec --saveEngine=yolov8_trt.engine \
--workspace=1073741824 \
--fp16
此过程会读取之前生成的.onnx
文件,并根据指定参数生成对应的.engine
二进制文件供后续加载使用[^2]。
接着是在Python端加载这个预先编译好的TensorRT引擎来进行实际推断的任务:
import tensorrt as trt
import pycuda.driver as cuda
import numpy as np
import cv2
def load_engine(engine_file_path=""):
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
return runtime.deserialize_cuda_engine(f.read())
class HostDeviceMem(object):
def __init__(self, host_mem, device_mem):
self.host = host_mem
self.device = device_mem
def __str__(self):
string = "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device)
return string
def __repr__(self):
return self.__str__()
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append the device buffer to device bindings.
bindings.append(int(device_mem))
# Append to appropriate list based on whether it's an input or output
if engine.binding_is_input(binding):
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
def do_inference(context, bindings, inputs, outputs, stream, batch_size=1):
# Transfer data from CPU to GPU
[cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs]
context.execute_async(batch_size=batch_size,
bindings=bindings,
stream_handle=stream.handle)
# Transfer predictions back from GPU
[cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs]
# Synchronize threads to ensure that CUDA streams are complete
stream.synchronize()
return [out.host for out in outputs]
if __name__ == "__main__":
image = cv2.imread("test_image.jpg")
h, w, _ = image.shape
# Preprocess: resize & normalize (specific preprocessing depends on your dataset/model requirements)
resized_img = cv2.resize(image, (640, 640)).astype(np.float32)/255.0
img_np = np.transpose(resized_img, axes=[2, 0, 1])[np.newaxis,...].copy()
engine = load_engine("yolov8_trt.engine")
with engine.create_execution_context() as context:
inputs, outputs, bindings, stream = allocate_buffers(engine)
# Set actual input values into allocated memory space
np.copyto(inputs[0].host, img_np.ravel())
result = do_inference(
context=context,
bindings=bindings,
inputs=inputs,
outputs=outputs,
stream=stream)[0]
# Post-process results here...
print(result.reshape(-1, 85)[:,:5]) # Adjust slice according to model architecture
这段程序实现了基本的数据传输逻辑以及通过TensorRT API执行前向传播获取预测值的核心功能。注意这里的后处理环节取决于具体的应用场景和个人需求而有所不同,比如解码网络输出得到的目标位置信息及其关联属性等。
相关推荐

















