贝叶斯分类器有哪些,列出sklearn调用代码
时间: 2024-05-03 16:17:18 浏览: 160
贝叶斯分类器主要分为朴素贝叶斯分类器和高斯贝叶斯分类器两类。
下面是使用sklearn调用贝叶斯分类器的代码示例:
1. 朴素贝叶斯分类器
```python
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
```
2. 高斯贝叶斯分类器
```python
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
```
其中,X_train和y_train分别为训练数据的特征和标签,X_test为测试数据的特征。y_pred为分类器对测试数据的预测结果。
相关问题
利用代码实现朴素贝叶斯分析托儿所录取问题先调用算法函数再读取相关数据再划分训练集和测试集,再使用朴素贝叶斯进行分类再输出模型准确率再给出录取建议
好的,以下是代码实现:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
# 定义朴素贝叶斯算法函数
def naive_bayes_classifier(train_x, train_y):
# 创建一个高斯朴素贝叶斯分类器
model = GaussianNB()
# 使用训练数据进行模型训练
model.fit(train_x, train_y)
return model
# 读取数据集
data = pd.read_csv('data.csv')
# 获取特征列和目标列
feature_cols = list(data.columns[:-1])
target_col = data.columns[-1]
# 将特征列和目标列分别赋值给X和y
X = data[feature_cols]
y = data[target_col]
# 划分训练集和测试集,测试集占比为30%
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 调用朴素贝叶斯算法函数进行模型训练
model = naive_bayes_classifier(X_train, y_train)
# 使用测试集进行模型预测
y_pred = model.predict(X_test)
# 计算模型准确率
accuracy = accuracy_score(y_test, y_pred)
print("模型准确率为:%.2f%%" % (accuracy * 100))
# 输出录取建议
if model.predict([[90, 70]])[0] == 1:
print("建议录取")
else:
print("建议不录取")
```
其中,data.csv文件是托儿所录取数据集,可以自行准备或从网上下载。代码中使用了sklearn库的train_test_split函数将数据集划分为训练集和测试集,使用了GaussianNB类实现高斯朴素贝叶斯分类器,使用了accuracy_score函数计算模型准确率。最后根据模型预测结果输出录取建议。
阅读全文
相关推荐
















