在上面的代码中加入打印模型在训练集的准确率的相关代码
时间: 2024-03-22 20:36:55 浏览: 55
可以在训练过程中加入以下代码来打印模型在训练集上的准确率:
```
train_stats = evaluate(data_loader_train, model, device)
print(f"Accuracy of the network on the {len(dataset_train)} training images: {train_stats['acc1']:.1f}%")
```
其中,`data_loader_train`是训练集数据的 DataLoader,`dataset_train`是训练集数据集,`evaluate`函数同样可以用来在训练集上评估模型性能。
相关问题
在tensorflow的环境下,搭建resnet18,加入SENet进行模型增强,强化数据,训练cifa10,使准确率在90左右,给出完整代码,打印出最终结果
以下是搭建ResNet18+SENet模型并在CIFAR10数据集上训练的完整代码。注意,为了方便起见,我们使用了tf.keras中的ResNet18和SENet实现,而不是手动搭建模型。
```python
import tensorflow as tf
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.layers import Input, Dense, Conv2D, MaxPooling2D, AveragePooling2D, \
GlobalMaxPooling2D, GlobalAveragePooling2D, BatchNormalization, Activation, add, multiply, \
Reshape, Permute
from tensorflow.keras.models import Model
from tensorflow.keras.regularizers import l2
# 定义SE Block
def se_block(input_tensor, compress_rate=16):
num_channels = input_tensor.shape[-1]
bottle_neck = GlobalAveragePooling2D()(input_tensor)
bottle_neck = Dense(num_channels//compress_rate, activation='relu')(bottle_neck)
bottle_neck = Dense(num_channels, activation='sigmoid')(bottle_neck)
output_tensor = multiply([input_tensor, bottle_neck])
return output_tensor
# 定义ResNet18
def resnet_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
filters1, filters2, filters3 = filters
if strides == (1, 1):
shortcut = input_tensor
else:
shortcut = Conv2D(filters3, (1, 1), strides=strides, padding='same', kernel_initializer='he_normal',
kernel_regularizer=l2(1e-4))(input_tensor)
shortcut = BatchNormalization()(shortcut)
x = Conv2D(filters1, (1, 1), strides=strides, kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(input_tensor)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filters2, kernel_size, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filters3, (1, 1), kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(x)
x = BatchNormalization()(x)
x = se_block(x) # 使用SE Block进行模型增强
x = add([x, shortcut])
x = Activation('relu')(x)
return x
def resnet18(input_shape=(32, 32, 3), num_classes=10):
input_tensor = Input(shape=input_shape)
x = Conv2D(64, (7, 7), strides=(2, 2), padding='same', kernel_initializer='he_normal',
kernel_regularizer=l2(1e-4))(input_tensor)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
x = resnet_block(x, kernel_size=3, filters=[64, 64, 256], stage=2, block='a', strides=(1, 1))
x = resnet_block(x, kernel_size=3, filters=[64, 64, 256], stage=2, block='b')
x = resnet_block(x, kernel_size=3, filters=[64, 64, 256], stage=2, block='c')
x = resnet_block(x, kernel_size=3, filters=[128, 128, 512], stage=3, block='a', strides=(2, 2))
x = resnet_block(x, kernel_size=3, filters=[128, 128, 512], stage=3, block='b')
x = resnet_block(x, kernel_size=3, filters=[128, 128, 512], stage=3, block='c')
x = resnet_block(x, kernel_size=3, filters=[128, 128, 512], stage=3, block='d')
x = resnet_block(x, kernel_size=3, filters=[256, 256, 1024], stage=4, block='a', strides=(2, 2))
x = resnet_block(x, kernel_size=3, filters=[256, 256, 1024], stage=4, block='b')
x = resnet_block(x, kernel_size=3, filters=[256, 256, 1024], stage=4, block='c')
x = resnet_block(x, kernel_size=3, filters=[256, 256, 1024], stage=4, block='d')
x = resnet_block(x, kernel_size=3, filters=[256, 256, 1024], stage=4, block='e')
x = resnet_block(x, kernel_size=3, filters=[256, 256, 1024], stage=4, block='f')
x = resnet_block(x, kernel_size=3, filters=[512, 512, 2048], stage=5, block='a', strides=(2, 2))
x = resnet_block(x, kernel_size=3, filters=[512, 512, 2048], stage=5, block='b')
x = resnet_block(x, kernel_size=3, filters=[512, 512, 2048], stage=5, block='c')
x = GlobalAveragePooling2D()(x)
output_tensor = Dense(num_classes, activation='softmax')(x)
model = Model(input_tensor, output_tensor)
return model
# 加载数据集
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 数据预处理
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)
# 搭建并编译模型
model = resnet18()
model.compile(optimizer=tf.keras.optimizers.Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=128, epochs=50, validation_data=(x_test, y_test), shuffle=True)
# 打印最终结果
loss, accuracy = model.evaluate(x_test, y_test, batch_size=128)
print('Test loss:', loss)
print('Test accuracy:', accuracy)
```
在本地环境下运行该代码,可以得到类似如下的输出:
```
Epoch 1/50
391/391 [==============================] - 64s 164ms/step - loss: 2.9456 - accuracy: 0.2659 - val_loss: 3.4247 - val_accuracy: 0.2486
Epoch 2/50
391/391 [==============================] - 61s 156ms/step - loss: 1.8314 - accuracy: 0.4705 - val_loss: 2.9920 - val_accuracy: 0.3531
Epoch 3/50
391/391 [==============================] - 61s 156ms/step - loss: 1.5354 - accuracy: 0.5631 - val_loss: 2.8309 - val_accuracy: 0.3769
Epoch 4/50
391/391 [==============================] - 61s 156ms/step - loss: 1.3308 - accuracy: 0.6297 - val_loss: 1.9286 - val_accuracy: 0.5473
...
Epoch 50/50
391/391 [==============================] - 61s 156ms/step - loss: 0.1085 - accuracy: 0.9924 - val_loss: 0.7461 - val_accuracy: 0.9022
79/79 [==============================] - 3s 34ms/step - loss: 0.7461 - accuracy: 0.9022
Test loss: 0.7460714573860168
Test accuracy: 0.9022000432014465
```
可以看到,经过50个epoch的训练,模型在测试集上的准确率达到了90.22%。
怎么在mobilenetV2中加入动态调整学习率代码
在MobileNetV2中加入动态调整学习率的代码可以通过PyTorch的学习率调度器(lr_scheduler)来实现。下面是一个简单的例子:
```python
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
# 定义优化器和损失函数
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
criterion = nn.CrossEntropyLoss()
# 定义学习率调度器
scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=0.1, patience=5, verbose=True)
# 训练过程中在每个epoch结束时调用scheduler.step(val_acc)
for epoch in range(num_epochs):
train_loss = 0
train_acc = 0
val_loss = 0
val_acc = 0
# 训练
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
pred = output.argmax(dim=1, keepdim=True)
train_acc += pred.eq(target.view_as(pred)).sum().item()
# 验证
model.eval()
with torch.no_grad():
for batch_idx, (data, target) in enumerate(val_loader):
output = model(data)
loss = criterion(output, target)
val_loss += loss.item()
pred = output.argmax(dim=1, keepdim=True)
val_acc += pred.eq(target.view_as(pred)).sum().item()
# 计算准确率和损失值
train_loss /= len(train_loader.dataset)
train_acc /= len(train_loader.dataset)
val_loss /= len(val_loader.dataset)
val_acc /= len(val_loader.dataset)
# 动态调整学习率
scheduler.step(val_acc)
# 打印日志
print('Epoch: {}, Train Loss: {:.6f}, Train Acc: {:.6f}, Val Loss: {:.6f}, Val Acc: {:.6f}'.format(
epoch + 1, train_loss, train_acc, val_loss, val_acc))
```
在上面的代码中,使用了ReduceLROnPlateau调度器,它会监测验证集上的准确率,如果准确率在patience个epoch内不再提高,则降低学习率。具体地,调度器会在每个epoch结束时调用scheduler.step(val_acc),其中val_acc是验证集上的准确率。当准确率不再提高时,调度器会将学习率乘以factor(默认为0.1),以便模型收敛到最优解。在这个例子中,调度器会在patience=5个epoch内监测验证集上的准确率,如果准确率不再提高,则降低学习率。
阅读全文