请写一段代码多输入单输出cnn lstm attention对时序数据进行回归预测python
时间: 2023-08-03 18:02:32 浏览: 130
当多个输入的时序数据,您可以使用Keras的函数式API来实现多输入单输出的CNN-LSTM-Attention模型。下面是一个简单的Python代码示例:
```python
# 导入所需的库
from keras.layers import Input, Conv1D, LSTM, Dense, Activation, Multiply, concatenate
from keras.models import Model
# 定义模型输入
input1 = Input(shape=(timesteps, input_dim1))
input2 = Input(shape=(timesteps, input_dim2))
# CNN层
conv1 = Conv1D(filters=64, kernel_size=3, padding='same', activation='relu')(input1)
conv2 = Conv1D(filters=64, kernel_size=3, padding='same', activation='relu')(input2)
# LSTM层
lstm1 = LSTM(units=128, return_sequences=True)(conv1)
lstm2 = LSTM(units=128, return_sequences=True)(conv2)
# 注意力机制
attention1 = Dense(units=1, activation='tanh')(lstm1)
attention1 = Activation('softmax')(attention1)
attention1 = Multiply()([lstm1, attention1])
attention1 = LSTM(units=64)(attention1)
attention2 = Dense(units=1, activation='tanh')(lstm2)
attention2 = Activation('softmax')(attention2)
attention2 = Multiply()([lstm2, attention2])
attention2 = LSTM(units=64)(attention2)
# 合并两个输入
merge = concatenate([attention1, attention2])
# 输出层
output = Dense(units=output_dim, activation='linear')(merge)
# 定义模型
model = Model(inputs=[input1, input2], outputs=output)
model.compile(loss='mse', optimizer='adam')
# 训练模型
model.fit([x_train1, x_train2], y_train, epochs=10, batch_size=32)
```
在代码中,我们定义了两个模型输入input1和input2,并分别添加了卷积层和LSTM层。然后,我们使用注意力机制处理两个输入的时序数据,最后将两个输入合并起来,并添加一个输出层。我们使用线性激活函数,并使用均方误差作为损失函数。训练模型时,我们使用Keras的函数式API,并使用模型的多个输入来训练模型。
阅读全文