linux中c语言将经纬度转换成高斯投影代码
时间: 2023-01-30 10:49:53 浏览: 122
可以使用如下的代码将经纬度坐标转换为高斯投影坐标:
```
#include <stdio.h>
#include <math.h>
#define PI 3.14159265
#define A 6378137
#define EE 0.00669437999014
int main()
{
double lng, lat, L, W, N, X, Y;
// 输入经纬度坐标
printf("请输入经度:");
scanf("%lf", &lng);
printf("请输入纬度:");
scanf("%lf", &lat);
// 转换为弧度
L = lng * PI / 180.0;
W = lat * PI / 180.0;
// 计算N
N = A / sqrt(1 - EE * sin(W) * sin(W));
// 计算高斯投影坐标
X = N * cos(W) * cos(L);
Y = N * cos(W) * sin(L);
// 输出高斯投影坐标
printf("高斯投影坐标为:(%.2lf, %.2lf)", X, Y);
return 0;
}
```
其中,A和EE是椭球长半轴和扁率的平方。
相关问题
高斯投影正算c语言代码
高斯投影是一种常见的地图投影方法,用于将球面坐标转换为平面坐标。在C语言中实现高斯投影正算(也称为投影计算)通常涉及到数学公式和地理坐标系统的转换。以下是一个简化的例子,展示了如何使用一些基本的数学步骤来实现这一过程:
```c
#include <stdio.h>
#include <math.h>
// 假设我们用的是WGS84经纬度系统
const double EARTH_RADIUS = 6371000; // 地球平均半径,单位米
const double PI = 3.14159265358979323846;
// 高斯投影参数(例如UTM区号对应的参数)
struct GaussParams {
double central_meridian;
double false_easting;
double false_northing;
};
// 高斯投影正算
double project(double lat, double lon, struct GaussParams params) {
double phi = lat * PI / 180; // 经纬度转弧度
double lambda = lon * PI / 180;
// 公式:x = N * (λ - λ0) + E0
// y = N * [φ - φ0 - tan(φ0) * sin(λ - λ0)]
double N = params.central_meridian / 180 * M_PI; // 平曲率半径
double x = N * (lambda - params.central_meridian) + params.false_easting;
double y = N * (phi - params.false_latitude - atan(tan(phi) / cos(lambda)));
return {x, y};
}
int main() {
// 示例:UTM 33N
struct GaussParamsutm33N = {
.central_meridian = 363.0, // 中央经线,以度为单位
.false_easting = 500000, // 假定的东移量
.false_northing = 0, // 假定的北移量
};
double lat = 40.0; // 测试纬度
double lon = -75.0; // 测试经度
double result = project(lat, lon, &GaussParamsutm33N);
printf("Projected coordinates: (%lf, %lf)\n", result.x, result.y);
//
c语言高斯投影正反算
高斯投影正反算是指将经纬度坐标转换为高斯平面坐标,或将高斯平面坐标转换为经纬度坐标的过程。下面是C语言实现高斯投影正反算的示例代码:
1.高斯投影正算
```c
#include <stdio.h>
#include <math.h>
#define PI 3.14159265358979323846
#define a 6378137.0
#define b 6356752.3142
#define f (a-b)/a
#define e sqrt(2*f-f*f)
#define ee e*e
#define M_PI 3.14159265358979323846
double rad(double d)
{
return d * PI / 180.0;
}
void Gauss(double B, double L, double &X, double &Y)
{
double L0 = rad(120);
double l = L - L0;
double t = tan(B);
double n2 = ee * cos(B) * cos(B);
double l2 = l * l;
double l4 = l2 * l2;
double l6 = l4 * l2;
double N = a / sqrt(1 - ee * sin(B) * sin(B));
X = 500000 + (1 + l2 / 2 + (5 - t * t + 9 * n2 + 4 * n2 * n2) * l4 / 24 + (61 - 58 * t * t + t * t * t * t) * l6 / 720) * N * cos(B) * l; Y = (1 + (1 - t * t + n2) * l2 / 6 + (5 - 18 * t * t + t * t * t * t + 14 * n2 - 58 * n2 * t * t) * l4 / 120) * N * cos(B) * l * l * l / 6 + N * rad(B);
}
int main()
{
double B = rad(31.177427);
double L = rad(121.527210);
double X, Y;
Gauss(B, L, X, Y);
printf("X: %lf, Y: %lf\n", X, Y);
return 0;
}
```
2.高斯投影反算
```c
#include <stdio.h>
#include <math.h>
#define PI 3.14159265358979323846
#define a 6378137.0
#define b 6356752.3142
#define f (a-b)/a
#define e sqrt(2*f-f*f)
#define ee e*e
#define M_PI 3.14159265358979323846
double rad(double d)
{
return d * PI / 180.0;
}
void Gauss_Reverse(double X, double Y, double &B, double &L)
{
double L0 = rad(120);
double x = X - 500000;
double y = Y;
double e1 = (1 - sqrt(1 - ee)) / (1 + sqrt(1 - ee));
double M = y;
double mu = M / (a * (1 - ee / 4 - 3 * ee * ee / 64 - 5 * ee * ee * ee / 256));
double e2 = (e * e) / (1 - e * e);
double C1 = e2 * cos(mu) * cos(mu);
double T1 = tan(mu) * tan(mu);
double N1 = a / sqrt(1 - ee * sin(mu) * sin(mu));
double R1 = a * (1 - ee) / pow(1 - ee * sin(mu) * sin(mu), 1.5);
double D = x / N1;
B = mu - (N1 * tan(mu) / R1) * (D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * e2) * pow(D, 4) / 24 + (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * e2 - 3 * C1 * C1) * pow(D, 6) / 720);
L = L0 + (D - (1 + 2 * T1 + C1) * pow(D, 3) / 6 + (5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * e2 + 24 * T1 * T1) * pow(D, 5) / 120) / cos(mu);
B = B * 180 / PI;
L = L * 180 / PI;
}
int main()
{
double X = 345704.0;
double Y = 345704.0;
double B, L;
Gauss_Reverse(X, Y, B, L);
printf("B: %lf, L: %lf\n", B, L);
return 0;
}
```
阅读全文