基于以下R代码:library(glmnet) library(ggplot2) # 生成5030的随机数据和30个变量 set.seed(1111) n <- 50 p <- 30 X <- matrix(runif(n * p), n, p) y <- rnorm(n) # 生成三组不同系数的线性模型 beta1 <- c(rep(1, 3), rep(0, p - 3)) beta2 <- c(rep(0, 10), rep(1, 3), rep(0, p - 13)) beta3 <- c(rep(0, 20), rep(1, 3), rep(0, p - 23)) y1 <- X %% beta1 + rnorm(n) y2 <- X %% beta2 + rnorm(n) y3 <- X %*% beta3 + rnorm(n),每个线性模型组,均进行交叉验证,并以par(3,2)的规格分别画出每组在进行交叉验证时,基于不同的$\lambda$的交叉验证误差图和预测误差图
时间: 2024-02-24 14:56:35 浏览: 55
好的,以下是基于你提供的代码实现您的需求:
```
library(glmnet)
library(ggplot2)
# 生成5030的随机数据和30个变量
set.seed(1111)
n <- 50
p <- 30
X <- matrix(runif(n * p), n, p)
y <- rnorm(n)
# 生成三组不同系数的线性模型
beta1 <- c(rep(1, 3), rep(0, p - 3))
beta2 <- c(rep(0, 10), rep(1, 3), rep(0, p - 13))
beta3 <- c(rep(0, 20), rep(1, 3), rep(0, p - 23))
y1 <- X %*% beta1 + rnorm(n)
y2 <- X %*% beta2 + rnorm(n)
y3 <- X %*% beta3 + rnorm(n)
# 进行交叉验证并绘制误差图
cv1 <- cv.glmnet(X, y1)
cv2 <- cv.glmnet(X, y2)
cv3 <- cv.glmnet(X, y3)
# 绘制交叉验证误差图
par(mfrow = c(3, 2))
plot(cv1)
plot(cv2)
plot(cv3)
# 绘制预测误差图
pred1 <- predict(cv1, newx = X)
pred2 <- predict(cv2, newx = X)
pred3 <- predict(cv3, newx = X)
ggplot(data.frame(y = y1, y_pred = pred1), aes(x = y, y = y_pred)) +
geom_point() +
labs(title = "Model 1 Prediction Error Plot")
ggplot(data.frame(y = y2, y_pred = pred2), aes(x = y, y = y_pred)) +
geom_point() +
labs(title = "Model 2 Prediction Error Plot")
ggplot(data.frame(y = y3, y_pred = pred3), aes(x = y, y = y_pred)) +
geom_point() +
labs(title = "Model 3 Prediction Error Plot")
```
以上代码会生成三张交叉验证误差图和三张预测误差图,分别对应三个不同系数的线性模型。请注意,由于您没有指定交叉验证的次数和$\lambda$的范围,我在代码中使用了默认值。如果您需要更多的控制,可以参考glmnet函数的文档。
阅读全文