from torchvision.models.vgg import model_urls怎么用
时间: 2024-09-12 09:17:37 浏览: 93
`from torchvision.models.vgg import model_urls` 这行代码通常用于获取 torchvision 中预训练的 VGG 模型的权重下载链接。VGG 是一个预先训练好的卷积神经网络模型系列,其中包含了几个常见的架构比如 VGG16、VGG19 等。
当你在代码中导入这一部分时,`model_urls` 是一个字典,键是模型名称(如 'vgg16', 'vgg19' 等),值是对应的预训练权重文件的 URL。在使用时,你可以通过模型名称查找对应链接,然后下载并加载模型的预训练权重。
例如,如果你想下载 VGG16 的预训练权重,可以这样做:
```python
import torch
from torchvision.models.vgg import vgg16, model_urls
# 下载预训练权重
url = model_urls['vgg16']
state_dict = torch.hub.load_state_dict_from_url(url)
# 创建 VGG16 模型并加载预训练权重
vgg16_model = vgg16(pretrained=True)
vgg16_model.load_state_dict(state_dict)
```
注意,如果你在实际运行时遇到`ImportError`,那可能是由于网络连接问题或`model_urls`的结构已经更改。如上所述,现在可能需要使用`load_state_dict_from_url()`函数手动加载权重。
相关问题
# This is a sample Python script. # Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. import torch import torchvision from PIL.Image import Image from torch.utils.tensorboard import SummaryWriter from torch import nn, optim from torch.utils.data import dataloader from torchvision.transforms import transforms from module import MyModule train = torchvision.datasets.CIFAR10(root="../data",train=True, download=True, transform= transforms.ToTensor()) vgg_model = torchvision.models.vgg16(pretrained=True) vgg_model.classifier.add_module('add_linear', nn.Linear(1000,2)) #ToImage = transforms.ToPILImage() #Image.show(ToImage(train[0][0])) train_data = dataloader.DataLoader(train, batch_size = 128, shuffle=True) model = MyModule() epochs = 5 learningRate = 1e-3 optimizer = optim.SGD(model.parameters(),lr = learningRate) loss = nn.CrossEntropyLoss() Writer = SummaryWriter(log_dir="Training") step = 0 for epoch in range(epochs): total_loss = 0 for data,labels in train_data: y = vgg_model(data) los = loss(y,labels) optimizer.zero_grad() los.backward() optimizer.step() Writer.add_scalar("Training",los,step) step = step + 1 if step%100 == 0: print("Training for {0} times".format(step)) total_loss += los print("total_loss is {0}".format(los)) Writer.close() torch.save(vgg_model,"model_vgg.pth")将以上代码修改为二分类
好的,以下是将代码修改为二分类的版本:
```
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from module import MyModule
# 加载数据集
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root="../data", train=True, download=True, transform=train_transform)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
# 构建VGG网络并修改输出层
vgg_model = torchvision.models.vgg16(pretrained=True)
vgg_model.classifier = nn.Sequential(
nn.Linear(25088, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 2),
nn.LogSoftmax(dim=1)
)
model = MyModule()
# 设置超参数
epochs = 5
learning_rate = 0.001
optimizer = optim.SGD(vgg_model.parameters(), lr=learning_rate)
loss_fn = nn.NLLLoss()
writer = SummaryWriter(log_dir="Training")
step = 0
# 训练模型
for epoch in range(epochs):
total_loss = 0
for data, labels in train_loader:
optimizer.zero_grad()
output = vgg_model(data)
loss = loss_fn(output, labels)
loss.backward()
optimizer.step()
writer.add_scalar("Training Loss", loss, step)
step += 1
if step % 100 == 0:
print("Training for {0} times".format(step))
total_loss += loss.item()
print("Epoch {0}, total loss: {1}".format(epoch + 1, total_loss))
writer.close()
# 保存模型
torch.save(vgg_model, "model_vgg.pth")
```
在这个版本中,我们使用了`nn.LogSoftmax`作为最后一层的激活函数,并使用`nn.NLLLoss()`作为损失函数。同时,我们将VGG网络的输出层修改为一个具有两个输出节点的线性层。另外,我们还对输入图片进行了大小调整和归一化处理。
vgg16_false = torchvision.models.vgg16()
你好!关于你提到的代码 `vgg16_false = torchvision.models.vgg16()`,它使用了 torchvision 库中的 VGG16 模型。这是一个预训练的卷积神经网络模型,常用于图像分类任务。通过调用 `vgg16_false`,你可以创建一个 VGG16 的实例来进行图像处理和分析。
阅读全文