遗传算法采用聚类初始化种群c语言
时间: 2023-10-26 22:11:17 浏览: 101
遗传算法的种群初始化可以使用聚类算法来进行。以下是一种使用k-means聚类算法初始化种群的C语言实现:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
// 定义数据点
typedef struct {
double x;
double y;
} Point;
// 定义聚类中心
typedef struct {
double x;
double y;
} Cluster;
// 计算两点之间的距离
double distance(Point p1, Point p2) {
return sqrt(pow(p1.x - p2.x, 2) + pow(p1.y - p2.y, 2));
}
// k-means聚类算法
void kmeans(Point* data, Cluster* clusters, int k, int n) {
int i, j, l;
int* cluster_sizes = (int*)malloc(k * sizeof(int));
for (i = 0; i < k; i++) {
clusters[i].x = data[i].x;
clusters[i].y = data[i].y;
cluster_sizes[i] = 1;
}
for (l = 0; l < 10; l++) {
for (i = 0; i < n; i++) {
double min_distance = distance(data[i], clusters[0]);
int min_cluster = 0;
for (j = 1; j < k; j++) {
double d = distance(data[i], clusters[j]);
if (d < min_distance) {
min_distance = d;
min_cluster = j;
}
}
clusters[min_cluster].x =
(clusters[min_cluster].x * cluster_sizes[min_cluster] + data[i].x) /
(cluster_sizes[min_cluster] + 1);
clusters[min_cluster].y =
(clusters[min_cluster].y * cluster_sizes[min_cluster] + data[i].y) /
(cluster_sizes[min_cluster] + 1);
cluster_sizes[min_cluster]++;
}
}
free(cluster_sizes);
}
// 初始化种群
void init_population(Point* data, Cluster* clusters, int k, int n, int pop_size) {
int i, j;
for (i = 0; i < pop_size; i++) {
kmeans(data, clusters + i * k, k, n);
}
}
int main() {
// 假设有n个数据点
int n = 100;
Point* data = (Point*)malloc(n * sizeof(Point));
int i;
for (i = 0; i < n; i++) {
data[i].x = rand() % 100;
data[i].y = rand() % 100;
}
// 假设要初始化k个聚类中心,种群大小为pop_size
int k = 10;
int pop_size = 50;
Cluster* clusters = (Cluster*)malloc(k * pop_size * sizeof(Cluster));
init_population(data, clusters, k, n, pop_size);
// 打印种群
for (i = 0; i < pop_size; i++) {
printf("Population %d:\n", i);
int j;
for (j = 0; j < k; j++) {
printf("(%f, %f)\n", clusters[i * k + j].x, clusters[i * k + j].y);
}
}
free(data);
free(clusters);
return 0;
}
```
该程序先生成n个随机数据点,然后使用k-means聚类算法初始化种群,最后打印出种群的每个个体的k个聚类中心。在实际应用中,可以根据需要修改聚类算法和其它参数来满足特定的需求。
阅读全文