def activated(activation_choose, input):
时间: 2024-04-26 21:25:00 浏览: 75
这段代码定义了一个名为activated的函数,该函数的输入参数包括激活函数类型activation_choose和输入input。
由于代码没有完成,因此无法确定函数的具体作用和实现方式。但是可以猜测,该函数的作用可能是根据激活函数类型选择相应的激活函数对输入数据进行激活,并返回激活后的结果。具体来说,可能会使用if语句或者字典等工具根据激活函数类型来选择对应的激活函数,例如ReLU、sigmoid或者tanh等,并将输入input作为参数传递给选择的激活函数,最终返回激活后的结果。
相关问题
def relu(x): output=np.maximum(0, x) return output,x def relu_back_propagation(derror_wrt_output,x): derror_wrt_dinputs = np.array(derror_wrt_output, copy=True) derror_wrt_dinputs[x <= 0] = 0 return derror_wrt_dinputs def activated(activation_choose,x): elif activation_choose == 'relu': return relu(x)
这段代码存在一些问题,其中 `activated` 函数中的 `elif` 缺少了 `if`,应该改为如下形式:
```
def activated(activation_choose, x):
if activation_choose == 'relu':
return relu(x)
```
此外,`relu` 函数中的 `return` 语句应该改为只返回 `output`,而不是返回 `output` 和 `x`,即:
```
def relu(x):
output = np.maximum(0, x)
return output
```
最后,你还需要在代码的开头导入 `numpy` 库,即添加如下语句:
```
import numpy as np
```
这样就可以正常运行了。
import pandas as pd import warnings import sklearn.datasets import sklearn.linear_model import matplotlib import matplotlib.font_manager as fm import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx') print(data.info()) fig = plt.figure(figsize=(10, 8)) sns.heatmap(data.corr(), cmap="YlGnBu", annot=True) plt.title('相关性分析热力图') plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = 'SimHei' plt.show() y = data['y'] x = data.drop(['y'], axis=1) print('************************输出新的特征集数据***************************') print(x.head()) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) def relu(x): output=np.maximum(0, x) return output def relu_back_propagation(derror_wrt_output,x): derror_wrt_dinputs = np.array(derror_wrt_output, copy=True) derror_wrt_dinputs[x <= 0] = 0 return derror_wrt_dinputs def activated(activation_choose,x): if activation_choose == 'relu': return relu(x) def activated_back_propagation(activation_choose, derror_wrt_output, output): if activation_choose == 'relu': return relu_back_propagation(derror_wrt_output, output) class NeuralNetwork: def __init__(self, layers_strcuture, print_cost = False): self.layers_strcuture = layers_strcuture self.layers_num = len(layers_strcuture) self.param_layers_num = self.layers_num - 1 self.learning_rate = 0.0618 self.num_iterations = 2000 self.x = None self.y = None self.w = dict() self.b = dict() self.costs = [] self.print_cost = print_cost self.init_w_and_b() def set_learning_rate(self,learning_rate): self.learning_rate=learning_rate def set_num_iterations(self, num_iterations): self.num_iterations = num_iterations def set_xy(self, input, expected_output): self.x = input self.y = expected_output
这段代码存在两个问题:
1. 在import语句中没有使用逗号分隔符,应该在每个import语句之间添加逗号分隔符。
2. 在函数set_xy()的定义中,函数体没有缩进,应该在函数体内部添加缩进。
以下是修改后的代码:
```python
import pandas as pd, warnings
import sklearn.datasets, sklearn.linear_model
import matplotlib, matplotlib.font_manager as fm
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx')
print(data.info())
fig = plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), cmap="YlGnBu", annot=True)
plt.title('相关性分析热力图')
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.show()
y = data['y']
x = data.drop(['y'], axis=1)
print('************************输出新的特征集数据***************************')
print(x.head())
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
def relu(x):
output=np.maximum(0, x)
return output
def relu_back_propagation(derror_wrt_output,x):
derror_wrt_dinputs = np.array(derror_wrt_output, copy=True)
derror_wrt_dinputs[x <= 0] = 0
return derror_wrt_dinputs
def activated(activation_choose,x):
if activation_choose == 'relu':
return relu(x)
def activated_back_propagation(activation_choose, derror_wrt_output, output):
if activation_choose == 'relu':
return relu_back_propagation(derror_wrt_output, output)
class NeuralNetwork:
def __init__(self, layers_strcuture, print_cost = False):
self.layers_strcuture = layers_strcuture
self.layers_num = len(layers_strcuture)
self.param_layers_num = self.layers_num - 1
self.learning_rate = 0.0618
self.num_iterations = 2000
self.x = None
self.y = None
self.w = dict()
self.b = dict()
self.costs = []
self.print_cost = print_cost
self.init_w_and_b()
def set_learning_rate(self,learning_rate):
self.learning_rate=learning_rate
def set_num_iterations(self, num_iterations):
self.num_iterations = num_iterations
def set_xy(self, input, expected_output):
self.x = input
self.y = expected_output
```
阅读全文
相关推荐













