探索DenseNet网络的结构
时间: 2024-04-13 13:21:18 浏览: 126
DenseNet是一种密集连接的卷积神经网络,它的每一层都与前面所有层相连,这种连接方式可以使得梯度更好地传播,从而提高网络的性能。DenseNet的核心是密集块(Dense Block),每个密集块由多个卷积层组成,每个卷积层的输入都是前面所有卷积层的输出的拼接。在每个密集块之间,还有一个过渡层(Transition Layer),用于控制特征图的数量和大小,同时还可以降低计算复杂度。DenseNet的最后还有一个全局平均池化层和一个softmax层,用于分类任务。
下面是一个简单的DenseNet的代码实现:
```python
import torch
import torch.nn as nn
class DenseBlock(nn.Module):
def __init__(self, in_channels, growth_rate, num_layers):
super(DenseBlock, self).__init__()
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(nn.Sequential(
nn.BatchNorm2d(in_channels + i * growth_rate),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels + i * growth_rate, growth_rate, kernel_size=3, padding=1)
))
def forward(self, x):
features = [x]
for layer in self.layers:
new_features = layer(torch.cat(features, dim=1))
features.append(new_features)
return torch.cat(features, dim=1)
class TransitionLayer(nn.Module):
def __init__(self, in_channels, out_channels):
super(TransitionLayer, self).__init__()
self.layers = nn.Sequential(
nn.BatchNorm2d(in_channels),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.AvgPool2d(kernel_size=2, stride=2)
)
def forward(self, x):
return self.layers(x)
class DenseNet(nn.Module):
def __init__(self, num_classes, growth_rate=32, block_config=(6, 12, 24, 16)):
super(DenseNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
num_features = 64
for i, num_layers in enumerate(block_config):
block = DenseBlock(num_features, growth_rate, num_layers)
self.features.add_module(f'denseblock{i + 1}', block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
trans = TransitionLayer(num_features, num_features // 2)
self.features.add_module(f'transition{i + 1}', trans)
num_features = num_features // 2
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
self.classifier = nn.Linear(num_features, num_classes)
def forward(self, x):
features = self.features(x)
out = nn.functional.adaptive_avg_pool2d(features, (1, 1))
out = out.view(features.size(0), -1)
out = self.classifier(out)
return out
```
阅读全文