使用Pytorch完成逻辑回归问题 1.创建一些随机数据,并将其转换为Tensor类型 随机数据代码: np.random.seed(0) X = np.random.randn(100, 2) Y = np.zeros((100,)) Y[X[:,0] + X[:,1] > 0] = 1

时间: 2024-03-01 22:54:07 浏览: 20
好的,下面是根据您提供的代码创建随机数据并将其转换为Tensor类型的代码: ```python import numpy as np import torch # 创建随机数据 np.random.seed(0) X = np.random.randn(100, 2) Y = np.zeros((100,)) Y[X[:,0] + X[:,1] > 0] = 1 # 将数据转换为Tensor类型 x_data = torch.from_numpy(X).float() y_data = torch.from_numpy(Y).float().view(-1, 1) ``` 在这个例子中,我们使用NumPy生成了100个二维随机向量和它们的标签(根据两个特征相加是否大于0来判断标签)。然后,我们使用PyTorch的`torch.from_numpy()`方法将数据转换为Tensor类型,并使用`.float()`方法将数据类型转换为浮点型(默认情况下,`torch.from_numpy()`方法会生成双精度型数据)。最后,我们使用`.view()`方法将标签数据的形状从`(100,)`转换为`(100, 1)`。
相关问题

请将如下的matlab代码转为python代码,注意使用pytorch框架实现,并对代码做出相应的解释

在 MATLAB 中,该代码的作用是将数据集拆分为训练集、验证集和测试集。以下是 MATLAB 代码: ```matlab % Load dataset load('data.mat'); % Set random seed for reproducibility rng(1); % Shuffle dataset idx = randperm(numel(labels)); data = data(idx, :); labels = labels(idx); % Split dataset into train, validation, and test sets train_data = data(1:8000, :); val_data = data(8001:9000, :); test_data = data(9001:end, :); train_labels = labels(1:8000); val_labels = labels(8001:9000); test_labels = labels(9001:end); ``` 以下是 PyTorch Python 代码: ```python import torch import numpy as np # Load dataset data = np.load('data.npy') labels = np.load('labels.npy') # Set random seed for reproducibility torch.manual_seed(1) # Shuffle dataset idx = torch.randperm(labels.size()[0]) data = data[idx, :] labels = labels[idx] # Split dataset into train, validation, and test sets train_data = torch.Tensor(data[0:8000, :]) val_data = torch.Tensor(data[8001:9000, :]) test_data = torch.Tensor(data[9001:, :]) train_labels = torch.Tensor(labels[0:8000]) val_labels = torch.Tensor(labels[8001:9000]) test_labels = torch.Tensor(labels[9001:]) ``` 首先,我们使用 PyTorch 加载数据集。然后,我们使用 `torch.manual_seed` 设置随机数种子,以确保结果可重复。我们使用 `torch.randperm` 对数据集进行打乱。接着,我们使用 `torch.Tensor` 将 NumPy 数组转换为 PyTorch 张量。最后,我们将数据集分成训练集、验证集和测试集,并将标签转换为张量。

pytorch代码实现在模型中使用LDAMLoss损失函数,数据集是RAF-DB,使用了mixup数据增强

好的,以下是使用LDAMLoss和mixup数据增强的RAF-DB数据集的PyTorch代码实现: 首先,我们需要导入必要的库: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import DataLoader, Dataset from torch.autograd import Variable import numpy as np import random from PIL import Image ``` 接下来,我们需要定义LDAM(Large Margin Cosine Loss)损失函数: ```python class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = np.divide(1, np.sqrt(np.sqrt(cls_num_list))) m_list = np.multiply(max_m, m_list) m_list = torch.FloatTensor(m_list).cuda() self.m_list = m_list assert s > 0 self.s = s if weight is not None: self.weight = torch.FloatTensor(weight).cuda() else: self.weight = weight def forward(self, x, target): cosine = x sine = torch.sqrt(1.0 - torch.pow(cosine, 2)) phi = cosine * self.m_list.unsqueeze(1) - sine * self.m_list.unsqueeze(1) phi = phi.float() target = target.long().view(-1, 1) index = torch.zeros_like(phi) index.scatter_(1, target, 1) if self.weight is not None: weight = self.weight.unsqueeze(0) index = torch.matmul(index, weight.t()) index = index.clamp(min=1e-12, max=1 - 1e-12) index = index.log() loss = -index * torch.pow(torch.abs(phi), self.s) loss = loss.sum(dim=1).mean() else: index = index.cuda() loss = -torch.log(torch.abs(torch.gather(phi, 1, target)) + 1e-8) loss = loss.squeeze(1) loss = loss.mean() return loss ``` 接下来,我们需要定义mixup数据增强: ```python def mixup_data(x, y, alpha=1.0): if alpha > 0: lam = np.random.beta(alpha, alpha) else: lam = 1 batch_size = x.size()[0] index = torch.randperm(batch_size).cuda() mixed_x = lam * x + (1 - lam) * x[index, :] y_a, y_b = y, y[index] return mixed_x, y_a, y_b, lam ``` 然后,我们需要定义RAF-DB数据集的类: ```python class RAFDataset(Dataset): def __init__(self, data_path, transform=None): self.data_path = data_path self.transform = transform self.data = [] self.labels = [] with open(self.data_path, 'r') as f: for line in f: line = line.strip() img_path, label = line.split(' ') self.data.append(img_path) self.labels.append(int(label)) def __len__(self): return len(self.data) def __getitem__(self, index): img_path = self.data[index] label = self.labels[index] img = Image.open(img_path).convert('RGB') if self.transform is not None: img = self.transform(img) return img, label ``` 接下来,我们需要定义模型: ```python class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(128) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) self.bn3 = nn.BatchNorm2d(256) self.relu3 = nn.ReLU(inplace=True) self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1) self.bn4 = nn.BatchNorm2d(512) self.relu4 = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(512 * 12 * 12, 1024) self.drop1 = nn.Dropout(p=0.5) self.relu5 = nn.ReLU(inplace=True) self.fc2 = nn.Linear(1024, 7) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.conv3(x) x = self.bn3(x) x = self.relu3(x) x = self.conv4(x) x = self.bn4(x) x = self.relu4(x) x = self.pool(x) x = x.view(-1, 512 * 12 * 12) x = self.fc1(x) x = self.drop1(x) x = self.relu5(x) x = self.fc2(x) return x ``` 最后,我们需要定义训练和测试函数: ```python def train(model, train_loader, optimizer, criterion, alpha): model.train() train_loss = 0 train_correct = 0 train_total = 0 for i, (inputs, targets) in enumerate(train_loader): inputs, targets_a, targets_b, lam = mixup_data(inputs, targets, alpha=alpha) inputs, targets_a, targets_b = map(Variable, (inputs, targets_a, targets_b)) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets_a) * lam + criterion(outputs, targets_b) * (1 - lam) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) train_total += targets.size(0) train_correct += (lam * predicted.eq(targets_a.data).cpu().sum().float() + (1 - lam) * predicted.eq(targets_b.data).cpu().sum().float()) train_acc = train_correct / train_total train_loss = train_loss / len(train_loader) return train_acc, train_loss def test(model, test_loader, criterion): model.eval() test_loss = 0 test_correct = 0 test_total = 0 with torch.no_grad(): for inputs, targets in test_loader: inputs, targets = Variable(inputs), Variable(targets) outputs = model(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) test_total += targets.size(0) test_correct += predicted.eq(targets.data).cpu().sum().float() test_acc = test_correct / test_total test_loss = test_loss / len(test_loader) return test_acc, test_loss ``` 最后,我们需要定义主函数: ```python if __name__ == '__main__': # 设置随机种子,确保实验的可重复性 torch.manual_seed(233) np.random.seed(233) random.seed(233) # 定义训练参数 batch_size = 64 num_epochs = 100 lr = 0.1 alpha = 1.0 cls_num_list = [2000, 2000, 2000, 2000, 2000, 2000, 2000] train_data_path = 'train.txt' test_data_path = 'test.txt' # 定义数据增强和数据集 transform_train = transforms.Compose([ transforms.RandomCrop(44), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) transform_test = transforms.Compose([ transforms.CenterCrop(44), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) train_dataset = RAFDataset(train_data_path, transform=transform_train) test_dataset = RAFDataset(test_data_path, transform=transform_test) # 定义数据加载器 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4) # 定义模型和优化器 model = MyModel().cuda() optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4) criterion = LDAMLoss(cls_num_list) # 训练和测试 for epoch in range(num_epochs): train_acc, train_loss = train(model, train_loader, optimizer, criterion, alpha) test_acc, test_loss = test(model, test_loader, criterion) print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}' .format(epoch + 1, num_epochs, train_loss, train_acc, test_loss, test_acc)) if (epoch + 1) % 10 == 0: lr /= 10 optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4) ```

相关推荐

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

最新推荐

recommend-type

tensorflow-2.9.2-cp39-cp39-win-amd64.whl

python爬虫案例
recommend-type

2023年下半年计算机等级考试-公共基础-WPS-PS.zip

2023年下半年计算机等级一级考试Photoshop考点梳理 2023年下半年计算机等级一级考试WPS office考点汇总 2023年下半年计算机二级考试公共基础知识科目考点汇总 根据实际考试情况进行的总结。
recommend-type

Introduction to Data Science Data With R 英文

Introduction to Data Science Data Analysis and Prediction Algorithms with R 英文原版,完整带目录,非常好的数据分析资料,有基于R的完整数据分析过程
recommend-type

数电实验三:74LS151逻辑功能测试、74LS153逻辑功能测试、74LS153全加器、三输入多数表决电路

数电实验三:74LS151逻辑功能测试、74LS153逻辑功能测试、74LS153全加器、三输入多数表决电路
recommend-type

农业机械维修记录(表式).doc

农业机械维修记录(表式).doc
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

从键盘输入一段英文字符串,其中包含多个字母‘h',请编写程序利用正则表达式,将英文字符串中的’h'全部改为‘H’

好的,我可以帮您解决这个问题。 您可以使用 Python 编写一个程序来实现这个功能。具体步骤如下: 1. 首先导入 re 模块,这个模块是 Python 中用于处理正则表达式的模块。 2. 然后定义一个包含英文字符串的变量,例如: text = "This is a string containing multiple h's." 3. 接下来,使用 re.sub() 方法来进行替换操作。re.sub() 方法的第一个参数是正则表达式,第二个参数是替换的字符或字符串,第三个参数是被替换的字符串。在这个例子里,我们需要将所有的小写字母 h 替换成大写字母 H,所以正则表达式可以写成
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。