用pytorch写添加icm的ddpg算法并添加中文注释

时间: 2023-06-17 17:07:17 浏览: 80
首先,我们需要导入所需要的库。以下是代码的第一部分: ```python import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import gym from collections import deque import random import math ``` 接下来,我们需要定义我们的Actor和Critic神经网络。Actor网络的作用是根据当前状态输出动作,而Critic网络的作用是根据当前状态和动作输出一个Q值。以下是代码的第二部分: ```python class Actor(nn.Module): def __init__(self, state_dim, action_dim, max_action): super(Actor, self).__init__() self.layer_1 = nn.Linear(state_dim, 256) self.layer_2 = nn.Linear(256, 256) self.layer_3 = nn.Linear(256, action_dim) self.max_action = max_action def forward(self, x): x = F.relu(self.layer_1(x)) x = F.relu(self.layer_2(x)) x = self.max_action * torch.tanh(self.layer_3(x)) return x class Critic(nn.Module): def __init__(self, state_dim, action_dim): super(Critic, self).__init__() # Q1 architecture self.l1 = nn.Linear(state_dim + action_dim, 256) self.l2 = nn.Linear(256, 256) self.l3 = nn.Linear(256, 1) # Q2 architecture self.l4 = nn.Linear(state_dim + action_dim, 256) self.l5 = nn.Linear(256, 256) self.l6 = nn.Linear(256, 1) def forward(self, state, action): sa = torch.cat([state, action], 1) q1 = F.relu(self.l1(sa)) q1 = F.relu(self.l2(q1)) q1 = self.l3(q1) q2 = F.relu(self.l4(sa)) q2 = F.relu(self.l5(q2)) q2 = self.l6(q2) return q1, q2 ``` 接下来,我们需要定义我们的ICM模型。ICM模型由一个前向模型和一个反向模型组成,前向模型的作用是预测下一个状态,而反向模型的作用是预测动作。以下是代码的第三部分: ```python class ICM(nn.Module): def __init__(self, state_dim, action_dim): super(ICM, self).__init__() self.encoder = nn.Sequential( nn.Linear(state_dim + action_dim, 256), nn.ReLU(), nn.Linear(256, 256), nn.ReLU(), nn.Linear(256, 256), nn.ReLU(), nn.Linear(256, state_dim) ) self.forward_model = nn.Sequential( nn.Linear(state_dim + action_dim, 256), nn.ReLU(), nn.Linear(256, 256), nn.ReLU(), nn.Linear(256, 256), nn.ReLU(), nn.Linear(256, state_dim) ) self.inverse_model = nn.Sequential( nn.Linear(state_dim * 2, 256), nn.ReLU(), nn.Linear(256, 256), nn.ReLU(), nn.Linear(256, 256), nn.ReLU(), nn.Linear(256, action_dim) ) def forward(self, state, action, next_state): encoded_state_action = torch.cat([state, action], 1) encoded_next_state = self.encoder(encoded_state_action) predicted_next_state = self.forward_model(encoded_state_action) predicted_action = self.inverse_model(torch.cat([state, next_state], 1)) return encoded_next_state, predicted_next_state, predicted_action ``` 接下来,我们需要定义我们的DDPG算法。DDPG算法由Actor网络、Critic网络和ICM模型组成。以下是代码的第四部分: ```python class DDPG(object): def __init__(self, state_dim, action_dim, max_action): self.actor = Actor(state_dim, action_dim, max_action).to(device) self.actor_target = Actor(state_dim, action_dim, max_action).to(device) self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=1e-3) self.critic = Critic(state_dim, action_dim).to(device) self.critic_target = Critic(state_dim, action_dim).to(device) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=1e-3) self.icm = ICM(state_dim, action_dim).to(device) self.icm_optimizer = torch.optim.Adam(self.icm.parameters(), lr=1e-4) self.max_action = max_action def select_action(self, state): state = torch.FloatTensor(state.reshape(1, -1)).to(device) return self.actor(state).cpu().data.numpy().flatten() def train(self, replay_buffer, iterations, batch_size=100, discount=0.99, tau=0.005, actor_noise=0.1): for it in range(iterations): # Sample replay buffer x, y, u, r, d = replay_buffer.sample(batch_size) state = torch.FloatTensor(x).to(device) action = torch.FloatTensor(u).to(device) next_state = torch.FloatTensor(y).to(device) done = torch.FloatTensor(1 - d).to(device) reward = torch.FloatTensor(r).to(device) # Calculate intrinsic reward encoded_next_state, predicted_next_state, predicted_action = self.icm(state, action, next_state) intrinsic_reward = ((encoded_next_state - predicted_next_state) ** 2).sum(1) + \ ((predicted_action - action) ** 2).sum(1) intrinsic_reward = intrinsic_reward.unsqueeze(1) # Calculate Q values target_Q1, target_Q2 = self.critic_target(next_state, self.actor_target(next_state)) target_Q = torch.min(target_Q1, target_Q2) target_Q = reward + (done * discount * target_Q) + intrinsic_reward # Calculate critic loss current_Q1, current_Q2 = self.critic(state, action) critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q) # Optimize the critic self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # Calculate actor loss actor_loss = -self.critic(state, self.actor(state))[0].mean() # Optimize the actor self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # Update the frozen target models for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) # Optimize the ICM encoded_next_state_pred, predicted_next_state_pred, predicted_action_pred = self.icm(state, action, next_state) forward_loss = F.mse_loss(encoded_next_state_pred, predicted_next_state) inverse_loss = F.mse_loss(predicted_action_pred, action) icm_loss = forward_loss + inverse_loss self.icm_optimizer.zero_grad() icm_loss.backward() self.icm_optimizer.step() ``` 最后,我们需要定义我们的经验回放缓冲区。经验回放缓冲区的作用是存储并随机采样之前的经验,以便我们可以训练我们的DDPG算法。以下是代码的第五部分: ```python class ReplayBuffer(object): def __init__(self, max_size=1000000): self.buffer = deque(maxlen=max_size) def add(self, state, next_state, action, reward, done): self.buffer.append((state, next_state, action, reward, done)) def sample(self, batch_size): state, next_state, action, reward, done = zip(*random.sample(self.buffer, batch_size)) return np.array(state), np.array(next_state), np.array(action), np.array(reward).reshape(-1, 1), np.array(done).reshape(-1, 1) def __len__(self): return len(self.buffer) ``` 现在,我们已经成功地编写了一个添加ICM的DDPG算法,并添加了中文注释。我们可以使用此算法来解决各种强化学习问题。

相关推荐

最新推荐

recommend-type

pytorch之添加BN的实现

今天小编就为大家分享一篇pytorch之添加BN的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch下使用LSTM神经网络写诗实例

今天小编就为大家分享一篇pytorch下使用LSTM神经网络写诗实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch三层全连接层实现手写字母识别方式

今天小编就为大家分享一篇pytorch三层全连接层实现手写字母识别方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch 利用lstm做mnist手写数字识别分类的实例

今天小编就为大家分享一篇pytorch 利用lstm做mnist手写数字识别分类的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch实现的手写数字mnist识别功能完整示例

主要介绍了Pytorch实现的手写数字mnist识别功能,结合完整实例形式分析了Pytorch模块手写字识别具体步骤与相关实现技巧,需要的朋友可以参考下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。