用pytorch写添加icm的ddpg算法并添加中文注释
时间: 2023-06-17 11:07:17 浏览: 202
首先,我们需要导入所需要的库。以下是代码的第一部分:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import gym
from collections import deque
import random
import math
```
接下来,我们需要定义我们的Actor和Critic神经网络。Actor网络的作用是根据当前状态输出动作,而Critic网络的作用是根据当前状态和动作输出一个Q值。以下是代码的第二部分:
```python
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.layer_1 = nn.Linear(state_dim, 256)
self.layer_2 = nn.Linear(256, 256)
self.layer_3 = nn.Linear(256, action_dim)
self.max_action = max_action
def forward(self, x):
x = F.relu(self.layer_1(x))
x = F.relu(self.layer_2(x))
x = self.max_action * torch.tanh(self.layer_3(x))
return x
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
# Q1 architecture
self.l1 = nn.Linear(state_dim + action_dim, 256)
self.l2 = nn.Linear(256, 256)
self.l3 = nn.Linear(256, 1)
# Q2 architecture
self.l4 = nn.Linear(state_dim + action_dim, 256)
self.l5 = nn.Linear(256, 256)
self.l6 = nn.Linear(256, 1)
def forward(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
q2 = F.relu(self.l4(sa))
q2 = F.relu(self.l5(q2))
q2 = self.l6(q2)
return q1, q2
```
接下来,我们需要定义我们的ICM模型。ICM模型由一个前向模型和一个反向模型组成,前向模型的作用是预测下一个状态,而反向模型的作用是预测动作。以下是代码的第三部分:
```python
class ICM(nn.Module):
def __init__(self, state_dim, action_dim):
super(ICM, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(state_dim + action_dim, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, state_dim)
)
self.forward_model = nn.Sequential(
nn.Linear(state_dim + action_dim, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, state_dim)
)
self.inverse_model = nn.Sequential(
nn.Linear(state_dim * 2, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, action_dim)
)
def forward(self, state, action, next_state):
encoded_state_action = torch.cat([state, action], 1)
encoded_next_state = self.encoder(encoded_state_action)
predicted_next_state = self.forward_model(encoded_state_action)
predicted_action = self.inverse_model(torch.cat([state, next_state], 1))
return encoded_next_state, predicted_next_state, predicted_action
```
接下来,我们需要定义我们的DDPG算法。DDPG算法由Actor网络、Critic网络和ICM模型组成。以下是代码的第四部分:
```python
class DDPG(object):
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = Actor(state_dim, action_dim, max_action).to(device)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=1e-3)
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = Critic(state_dim, action_dim).to(device)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=1e-3)
self.icm = ICM(state_dim, action_dim).to(device)
self.icm_optimizer = torch.optim.Adam(self.icm.parameters(), lr=1e-4)
self.max_action = max_action
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).to(device)
return self.actor(state).cpu().data.numpy().flatten()
def train(self, replay_buffer, iterations, batch_size=100, discount=0.99, tau=0.005, actor_noise=0.1):
for it in range(iterations):
# Sample replay buffer
x, y, u, r, d = replay_buffer.sample(batch_size)
state = torch.FloatTensor(x).to(device)
action = torch.FloatTensor(u).to(device)
next_state = torch.FloatTensor(y).to(device)
done = torch.FloatTensor(1 - d).to(device)
reward = torch.FloatTensor(r).to(device)
# Calculate intrinsic reward
encoded_next_state, predicted_next_state, predicted_action = self.icm(state, action, next_state)
intrinsic_reward = ((encoded_next_state - predicted_next_state) ** 2).sum(1) + \
((predicted_action - action) ** 2).sum(1)
intrinsic_reward = intrinsic_reward.unsqueeze(1)
# Calculate Q values
target_Q1, target_Q2 = self.critic_target(next_state, self.actor_target(next_state))
target_Q = torch.min(target_Q1, target_Q2)
target_Q = reward + (done * discount * target_Q) + intrinsic_reward
# Calculate critic loss
current_Q1, current_Q2 = self.critic(state, action)
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Calculate actor loss
actor_loss = -self.critic(state, self.actor(state))[0].mean()
# Optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update the frozen target models
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
# Optimize the ICM
encoded_next_state_pred, predicted_next_state_pred, predicted_action_pred = self.icm(state, action, next_state)
forward_loss = F.mse_loss(encoded_next_state_pred, predicted_next_state)
inverse_loss = F.mse_loss(predicted_action_pred, action)
icm_loss = forward_loss + inverse_loss
self.icm_optimizer.zero_grad()
icm_loss.backward()
self.icm_optimizer.step()
```
最后,我们需要定义我们的经验回放缓冲区。经验回放缓冲区的作用是存储并随机采样之前的经验,以便我们可以训练我们的DDPG算法。以下是代码的第五部分:
```python
class ReplayBuffer(object):
def __init__(self, max_size=1000000):
self.buffer = deque(maxlen=max_size)
def add(self, state, next_state, action, reward, done):
self.buffer.append((state, next_state, action, reward, done))
def sample(self, batch_size):
state, next_state, action, reward, done = zip(*random.sample(self.buffer, batch_size))
return np.array(state), np.array(next_state), np.array(action), np.array(reward).reshape(-1, 1), np.array(done).reshape(-1, 1)
def __len__(self):
return len(self.buffer)
```
现在,我们已经成功地编写了一个添加ICM的DDPG算法,并添加了中文注释。我们可以使用此算法来解决各种强化学习问题。
阅读全文