用Neural Colorization模型算法来完成黑白图像彩色化的代码
时间: 2024-05-04 13:18:12 浏览: 103
以下是使用 PyTorch 实现 Neural Colorization 模型算法的代码。
首先,需要安装 PyTorch 和 torchvision 库:
```python
pip install torch torchvision
```
然后,加载训练好的预训练模型和一些必要的库:
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import numpy as np
from PIL import Image
```
接下来,定义模型:
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# encoder layers
self.conv1 = nn.Sequential(nn.Conv2d(1, 64, 3, stride=1, padding=1),
nn.ReLU())
self.conv2 = nn.Sequential(nn.Conv2d(64, 128, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(128))
self.conv3 = nn.Sequential(nn.Conv2d(128, 256, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(256))
self.conv4 = nn.Sequential(nn.Conv2d(256, 512, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.conv5 = nn.Sequential(nn.Conv2d(512, 512, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.conv6 = nn.Sequential(nn.Conv2d(512, 512, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.conv7 = nn.Sequential(nn.Conv2d(512, 512, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.conv8 = nn.Sequential(nn.Conv2d(512, 512, 3, stride=2, padding=1),
nn.ReLU())
# decoder layers
self.deconv1 = nn.Sequential(nn.ConvTranspose2d(512, 512, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.deconv2 = nn.Sequential(nn.ConvTranspose2d(1024, 512, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.deconv3 = nn.Sequential(nn.ConvTranspose2d(1024, 512, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.deconv4 = nn.Sequential(nn.ConvTranspose2d(1024, 512, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.deconv5 = nn.Sequential(nn.ConvTranspose2d(1024, 256, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(256))
self.deconv6 = nn.Sequential(nn.ConvTranspose2d(512, 128, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(128))
self.deconv7 = nn.Sequential(nn.ConvTranspose2d(256, 64, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(64))
# output layer
self.output = nn.Sequential(nn.ConvTranspose2d(128, 2, 3, stride=1, padding=1),
nn.Tanh())
def forward(self, x):
# encoder
conv1_out = self.conv1(x)
conv2_out = self.conv2(conv1_out)
conv3_out = self.conv3(conv2_out)
conv4_out = self.conv4(conv3_out)
conv5_out = self.conv5(conv4_out)
conv6_out = self.conv6(conv5_out)
conv7_out = self.conv7(conv6_out)
conv8_out = self.conv8(conv7_out)
# decoder
deconv1_out = self.deconv1(conv8_out)
deconv2_out = self.deconv2(torch.cat((deconv1_out, conv7_out), dim=1))
deconv3_out = self.deconv3(torch.cat((deconv2_out, conv6_out), dim=1))
deconv4_out = self.deconv4(torch.cat((deconv3_out, conv5_out), dim=1))
deconv5_out = self.deconv5(torch.cat((deconv4_out, conv4_out), dim=1))
deconv6_out = self.deconv6(torch.cat((deconv5_out, conv3_out), dim=1))
deconv7_out = self.deconv7(torch.cat((deconv6_out, conv2_out), dim=1))
# output
output = self.output(torch.cat((deconv7_out, conv1_out), dim=1))
return output
```
接下来,加载预训练模型:
```python
model = Net()
model.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu')))
```
接下来,定义彩色化函数:
```python
def colorize(img_path):
img = Image.open(img_path).convert('L')
img_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
img = img_transform(img).unsqueeze(0)
# run the image through the model
with torch.no_grad():
output = model(img)
# post-process the output
output = output.cpu().numpy().squeeze().transpose((1, 2, 0))
output = (output + 1) / 2 * 255
output = np.clip(output, 0, 255).astype(np.uint8)
# create the colored image
img = Image.open(img_path).convert('RGB')
output = Image.fromarray(output).resize(img.size, resample=Image.BICUBIC)
colored = Image.merge('RGB', (img, output))
return colored
```
最后,调用 colorize 函数来完成黑白图像的彩色化:
```python
colored = colorize('black_and_white.jpg')
colored.save('colored.jpg')
```
完整代码如下:
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import numpy as np
from PIL import Image
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# encoder layers
self.conv1 = nn.Sequential(nn.Conv2d(1, 64, 3, stride=1, padding=1),
nn.ReLU())
self.conv2 = nn.Sequential(nn.Conv2d(64, 128, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(128))
self.conv3 = nn.Sequential(nn.Conv2d(128, 256, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(256))
self.conv4 = nn.Sequential(nn.Conv2d(256, 512, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.conv5 = nn.Sequential(nn.Conv2d(512, 512, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.conv6 = nn.Sequential(nn.Conv2d(512, 512, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.conv7 = nn.Sequential(nn.Conv2d(512, 512, 3, stride=2, padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.conv8 = nn.Sequential(nn.Conv2d(512, 512, 3, stride=2, padding=1),
nn.ReLU())
# decoder layers
self.deconv1 = nn.Sequential(nn.ConvTranspose2d(512, 512, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.deconv2 = nn.Sequential(nn.ConvTranspose2d(1024, 512, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.deconv3 = nn.Sequential(nn.ConvTranspose2d(1024, 512, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.deconv4 = nn.Sequential(nn.ConvTranspose2d(1024, 512, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(512))
self.deconv5 = nn.Sequential(nn.ConvTranspose2d(1024, 256, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(256))
self.deconv6 = nn.Sequential(nn.ConvTranspose2d(512, 128, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(128))
self.deconv7 = nn.Sequential(nn.ConvTranspose2d(256, 64, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.BatchNorm2d(64))
# output layer
self.output = nn.Sequential(nn.ConvTranspose2d(128, 2, 3, stride=1, padding=1),
nn.Tanh())
def forward(self, x):
# encoder
conv1_out = self.conv1(x)
conv2_out = self.conv2(conv1_out)
conv3_out = self.conv3(conv2_out)
conv4_out = self.conv4(conv3_out)
conv5_out = self.conv5(conv4_out)
conv6_out = self.conv6(conv5_out)
conv7_out = self.conv7(conv6_out)
conv8_out = self.conv8(conv7_out)
# decoder
deconv1_out = self.deconv1(conv8_out)
deconv2_out = self.deconv2(torch.cat((deconv1_out, conv7_out), dim=1))
deconv3_out = self.deconv3(torch.cat((deconv2_out, conv6_out), dim=1))
deconv4_out = self.deconv4(torch.cat((deconv3_out, conv5_out), dim=1))
deconv5_out = self.deconv5(torch.cat((deconv4_out, conv4_out), dim=1))
deconv6_out = self.deconv6(torch.cat((deconv5_out, conv3_out), dim=1))
deconv7_out = self.deconv7(torch.cat((deconv6_out, conv2_out), dim=1))
# output
output = self.output(torch.cat((deconv7_out, conv1_out), dim=1))
return output
model = Net()
model.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu')))
def colorize(img_path):
img = Image.open(img_path).convert('L')
img_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
img = img_transform(img).unsqueeze(0)
# run the image through the model
with torch.no_grad():
output = model(img)
# post-process the output
output = output.cpu().numpy().squeeze().transpose((1, 2, 0))
output = (output + 1) / 2 * 255
output = np.clip(output, 0, 255).astype(np.uint8)
# create the colored image
img = Image.open(img_path).convert('RGB')
output = Image.fromarray(output).resize(img.size, resample=Image.BICUBIC)
colored = Image.merge('RGB', (img, output))
return colored
colored = colorize('black_and_white.jpg')
colored.save('colored.jpg')
```
阅读全文