使用网络爬虫Xpath爬取百度贴吧网页的url代码

时间: 2024-04-30 16:22:21 浏览: 182

这里是一个使用Python的XPath爬取百度贴吧网页的示例代码:

import requests
from lxml import etree

url = "https://tieba.baidu.com/f?kw=python&ie=utf-8&pn=0"

response = requests.get(url)

html = etree.HTML(response.text)

links = html.xpath('//a[@class="j_th_tit"]/@href')

for link in links:
    print("https://tieba.baidu.com" + link)

解释:

  1. 首先导入需要的库:requests和lxml.etree。
  2. 定义要爬取的网页链接。
  3. 使用requests库向链接发送GET请求,并获取响应。
  4. 使用lxml.etree的HTML函数将响应内容解析为HTML文档。
  5. 使用XPath表达式选取所有class属性为“j_th_tit”的a标签,并获取它们的href属性。
  6. 遍历所有链接,将它们的相对路径转换为完整URL,并输出到控制台。
相关问题

使用网络爬虫Xpath爬取百度贴吧网页的ul代码

抱歉,我作为AI语言模型,无法直接执行网络爬虫操作,因为这需要编写代码并连接到网络。但我可以提供一些示例代码来帮助你开始。你可以使用Python的requests和lxml库来实现这个目标。下面是一个示例代码:

import requests
from lxml import etree

url = "https://tieba.baidu.com/f?kw=python"
response = requests.get(url)

html = etree.HTML(response.text)
ul = html.xpath('//ul[@class="threadlist_bright j_threadlist_li_top"]/li')
for li in ul:
    print(etree.tostring(li, encoding="utf-8").decode("utf-8"))

这个示例代码会爬取百度贴吧上的Python吧首页,并打印出每个帖子的li标签内容。你可以根据需要修改代码来获取不同的数据。

使用scrapy爬取百度贴吧评论

使用Scrapy框架爬取百度贴吧评论

为了使用Scrapy框架来爬取百度贴吧的评论,需要创建一个新的Scrapy项目并编写相应的Spider脚本。以下是具体实现方法:

创建Scrapy项目

首先,在终端中执行命令以初始化新的Scrapy项目:

scrapy startproject baidu_tieba_crawler

这将在当前目录下生成名为baidu_tieba_crawler的新文件夹。

编写Spider类

进入项目的spiders子目录,并在此处创建一个Python模块用于定义具体的抓取逻辑。例如可以命名为tiebacomment_spider.py:

import scrapy
from ..items import BaidutiebaCrawlerItem


class TieBaCommentSpider(scrapy.Spider):
    name = "tieba_comments"
    
    allowed_domains = ["tieba.baidu.com"]
    start_urls = ['http://tieba.baidu.com/p/{post_id}'.format(post_id='帖子ID')]

    def parse(self, response):
        item = BaidutiebaCrawlerItem()
        
        comment_list = response.xpath('//div[@id="j_p_postlist"]/div')
        for each_comment in comment_list:
            author = each_comment.xpath('.//li[@class="d_name"]//text()').get().strip()
            content = ''.join(each_comment.xpath('.//cc/div/text()').extract()).strip()

            item['author'] = author
            item['content'] = content
            
            yield item
        
        next_page_url = response.css('a.next::attr(href)').get()
        if next_page_url is not None:
            yield response.follow(next_page_url, callback=parse)

上述代码片段展示了如何通过XPath解析HTML页面中的数据[^1]。这里假设已经有一个包含作者名称和评论正文的选择器路径;实际应用时可能需要根据目标网站的具体结构调整这些选择器表达式。

设置项配置

编辑位于根目录下的settings.py文件,设置一些必要的参数如USER_AGENT模拟浏览器访问行为以及启用ITEM_PIPELINES保存提取的数据到数据库或其他存储介质中。

BOT_NAME = 'baidu_tieba_crawler'

SPIDER_MODULES = ['baidu_tieba_crawler.spiders']
NEWSPIDER_MODULE = 'baidu_tieba_crawler.spiders'


ROBOTSTXT_OBEY = False
DOWNLOAD_DELAY = 3
RANDOMIZE_DOWNLOAD_DELAY=True
COOKIES_ENABLED=False

DEFAULT_REQUEST_HEADERS={
   ':authority': 'tieba.baidu.com',
   ':method': 'GET',
   ':scheme': 'https'
}

ITEM_PIPELINES = {
   'baidu_tieba_crawler.pipelines.BaidutiebaPipeline': 300,
}

定义Items对象

items.py里声明想要获取的信息字段,比如用户名、发布时间戳等。

import scrapy


class BaidutiebaCrawlerItem(scrapy.Item):
    # define the fields for your item here like:
    author = scrapy.Field()
    content = scrapy.Field()

完成以上步骤之后就可以利用命令行工具启动这个爬虫程序了:

cd path/to/baidu_tieba_crawler/
scrapy crawl tieba_comments -o output.json

此操作会将所有收集到的结果导出成JSON格式存放在同级目录下的output.json文件内[^2]。

向AI提问 loading 发送消息图标

相关推荐

大家在看

recommend-type

南邮电工电子基础实验A全部仿真

南邮电工电子基础实验A全部仿真和实验报告(私V:jizhixueshe 申请备注:电工仿真)
recommend-type

形成停止条件-c#导出pdf格式

(1)形成开始条件 (2)发送从机地址(Slave Address) (3)命令,显示数据的传送 (4)形成停止条件 PS 1 1 1 0 0 1 A1 A0 A Slave_Address A Command/Register ACK ACK A Data(n) ACK D3 D2 D1 D0 D3 D2 D1 D0 图12 9 I2C 串行接口 本芯片由I2C协议2线串行接口来进行数据传送的,包含一个串行数据线SDA和时钟线SCL,两线内 置上拉电阻,总线空闲时为高电平。 每次数据传输时由控制器产生一个起始信号,采用同步串行传送数据,TM1680每接收一个字节数 据后都回应一个ACK应答信号。发送到SDA 线上的每个字节必须为8 位,每次传输可以发送的字节数量 不受限制。每个字节后必须跟一个ACK响应信号,在不需要ACK信号时,从SCL信号的第8个信号下降沿 到第9个信号下降沿为止需输入低电平“L”。当数据从最高位开始传送后,控制器通过产生停止信号 来终结总线传输,而数据发送过程中重新发送开始信号,则可不经过停止信号。 当SCL为高电平时,SDA上的数据保持稳定;SCL为低电平时允许SDA变化。如果SCL处于高电平时, SDA上产生下降沿,则认为是起始信号;如果SCL处于高电平时,SDA上产生的上升沿认为是停止信号。 如下图所示: SDA SCL 开始条件 ACK ACK 停止条件 1 2 7 8 9 1 2 93-8 数据保持 数据改变   图13 时序图 1 写命令操作 PS 1 1 1 0 0 1 A1 A0 A 1 Slave_Address Command 1 ACK A Command i ACK X X X X X X X 1 X X X X X X XA ACK ACK A 图14 如图15所示,从器件的8位从地址字节的高6位固定为111001,接下来的2位A1、A0为器件外部的地 址位。 MSB LSB 1 1 1 0 0 1 A1 A0 图15 2 字节写操作 A PS A Slave_Address ACK 0 A Address byte ACK Data byte 1 1 1 0 0 1 A1 A0 A6 A5 A4 A3 A2 A1 A0 D3 D2 D1 D0 D3 D2 D1 D0 ACK 图16
recommend-type

rcs code_RCS_雷达截面积_matlab画rcs曲线_雷达_源码

关于雷达截面积的matlab仿真
recommend-type

amd主板现代待机规范S0i3

适合BIOS软件开发,适用于桌面设备的MS功能开发项目参考。 Modern Standby是一种新的电源型号,能够在低功耗空闲模式下即时启动 设备。它需要CPU、主板和BIOS以及软件的支持。AMD现代待机系统支持两种状态:S0i2和S0i3,它们的主要不同之处在于:功耗和唤醒延迟。 本文档涵盖BIOS和EC的要求和实现,以支持在AMD平台上现代待机。它还为客户设计提供了一些指导BIOS实现以启用MS •BIOS支持ACPI模型 •BIOS支持MS唤醒 •BIOS和EC中的节能支持 •单元测试问题调试
recommend-type

卷积神经网络在雷达自动目标识别中的研究进展.pdf

自动目标识别(ATR)是雷达信息处理领域的重要研究方向。由于卷积神经网络(CNN)无需进行特征工 程,图像分类性能优越,因此在雷达自动目标识别领域研究中受到越来越多的关注。该文综合论述了CNN在雷达 图像处理中的应用进展。首先介绍了雷达自动目标识别相关知识,包括雷达图像的特性,并指出了传统的雷达自 动目标识别方法局限性。给出了CNN卷积神经网络原理、组成和在计算机视觉领域的发展历程。然后着重介绍了 CNN在雷达自动目标识别中的研究现状,其中详细介绍了合成孔径雷达(SAR)图像目标的检测与识别方法。接下 来对雷达自动目标识别面临的挑战进行了深入分析。最后对CNN新理论、新模型,以及雷达新成像技术和未来复 杂环境下的应用进行了展望。

最新推荐

recommend-type

Python使用xpath实现图片爬取

总的来说,这段代码展示了如何使用Python和XPath进行图片爬取,以及如何通过线程池实现一定程度的并行处理。为了提高性能,可以进一步优化如采用异步IO模型,或者调整线程池的大小以适应目标网站的负载情况。
recommend-type

python爬虫之xpath的基本使用详解

XPath在Python的网络爬虫开发中广泛应用于数据抽取,尤其是在处理结构化的网页数据时。 首先,为了使用XPath,你需要安装`lxml`库,这是Python的一个高效XML和HTML处理库。你可以通过以下命令进行安装: ```bash ...
recommend-type

Python爬虫实例_城市公交网络站点数据的爬取方法

在本篇《Python爬虫实例_城市公交网络站点数据的爬取方法》中,我们将学习如何使用Python进行网络数据抓取,特别关注于获取城市公交网络站点的数据。首先,我们需要安装必要的库,如`requests`用于发送HTTP请求,...
recommend-type

python爬虫框架scrapy实战之爬取京东商城进阶篇

本篇文章将深入探讨如何使用Scrapy爬取京东商城的商品信息,特别关注动态加载的内容。 **一、Scrapy框架基础** Scrapy是一个基于Twisted的异步网络库,它提供了一个高级的结构,允许开发者快速编写爬虫项目。它的...
recommend-type

Python爬虫爬取新闻资讯案例详解

Python爬虫爬取新闻资讯案例详解是一篇详细指导如何使用Python进行新闻数据抓取的文章。在互联网时代,新闻资讯的数据量庞大,通过爬虫技术可以有效地自动化获取和分析这些信息。本文将深入探讨如何利用Python的...
recommend-type

VC++代码实现小波变换在图像处理中的应用

在信息技术领域中,小波变换是一种重要的数学工具,它在图像处理、信号处理、计算机视觉等多个方面有着广泛的应用。本篇内容将详细解析使用VC++(Visual C++,一种微软提供的集成开发环境)实现小波变换的知识点,特别是针对图像处理方面的小波变换基础功能。 ### VC++实现小波变换的知识点 #### 1. 小波变换基础 小波变换是一种时频分析方法,它提供了一种时间和频率的局域化分析工具。相对于傅里叶变换,小波变换在处理非平稳信号时具有优势,能够提供信号的多尺度特性分析。小波变换主要分为连续小波变换(CWT)和离散小波变换(DWT),而图像处理中常用的是离散小波变换。 #### 2. VC++编程环境和工具 VC++作为一种编程开发环境,支持C++语言的开发,提供了强大的类库支持和丰富的开发工具。在使用VC++进行小波变换开发时,开发者可以利用MFC(Microsoft Foundation Classes)、ATL(Active Template Library)等类库来辅助实现复杂的程序功能。 #### 3. 小波变换在图像处理中的应用 小波变换在图像处理中的应用主要体现在以下几个方面: - **滤波**:小波变换可以通过多尺度分解将图像分解成不同频率的子带,有利于实现图像的去噪处理。 - **小波分解与重构**:通过将图像分解成一系列的近似系数和细节系数,可以在不同的尺度上对图像进行分析和处理。在处理完毕后,通过小波重构可以恢复图像。 - **图像融合**:利用小波变换可以实现多幅图像在同一尺度上的融合,这种融合通常在图像处理的多传感器数据融合以及图像增强等领域中有重要作用。 #### 4. VC++实现小波变换的步骤 实现小波变换的程序设计大致可分为以下几个步骤: - **选择合适的小波基**:不同的小波基具有不同的时频特性,需要根据具体问题来选择。 - **图像预处理**:包括图像的读取、显示以及必要的格式转换等。 - **小波分解**:设计小波分解算法,将图像分解成不同层次的小波系数。 - **小波系数处理**:根据需要对小波系数进行阈值处理、增强等操作。 - **小波重构**:根据处理后的小波系数重构图像。 #### 5. 关键技术点 - **多分辨率分析(MRA)**:这是小波变换中一个核心概念,它允许对信号进行不同尺度的分析。 - **小波基函数**:小波变换的核心是小波基函数的选择,常见的小波基有Haar、Daubechies、Coiflet等。 - **快速小波变换(FFT)**:为了提高变换的速度和效率,通常采用快速算法来实现小波变换,如快速傅里叶变换(FFT)算法的变种。 - **滤波器设计**:小波变换涉及到低通滤波器和高通滤波器的设计,这些滤波器的性能直接影响到小波变换的效果。 #### 6. 相关代码分析 在使用VC++进行小波变换的编程中,开发者通常需要创建多个类来处理不同的任务。例如: - **WaveletTransform**:此类负责小波变换的核心算法实现,包括正向变换和逆变换。 - **WaveletFilter**:此类负责小波滤波器的设计和应用。 - **ImageProcess**:此类负责图像的读取、处理和显示等操作。 在实际的代码实现中,开发者需要对每一部分进行精心设计,以保证程序的性能和稳定性。 #### 7. 小波变换的未来发展 随着技术的不断进步,小波变换在深度学习、机器视觉等新兴领域的应用前景广阔。未来小波变换的发展方向可能包括: - **多小波变换**:即使用多个小波基来对信号或图像进行分析。 - **非线性小波变换**:相比传统的线性小波变换,非线性小波变换能更好地处理图像中的非线性特征。 - **实时小波变换**:随着硬件技术的发展,实时小波变换在视频信号处理等实时性要求较高的领域将有更大需求。 #### 8. 结论 VC++实现小波变换是图像处理和信号处理中的重要技术,它具备高效、灵活的特点。通过上述的深入分析,我们可以了解到,无论是从理论还是实践应用的角度,小波变换都是一项基础且核心的技术,对于IT行业的从业者而言,掌握小波变换的知识和VC++实现技巧是提升专业能力的重要途径之一。
recommend-type

新手必看!Cmake3.30入门教程:快速掌握构建系统基本使用

# 摘要 CMake作为一种跨平台的自动化构建系统工具,已经成为开发者配置项目构建过程的标准方式。本文首先介绍了CMake的基础知识,包括它的项目结构、基础语法、变量使用以及命令和函数的详细说明。随后,深入探讨了CMake在实践操作中的应用,涵盖了单项目的构建、多项目的构建与依赖管理以及跨平台构建配置的技巧。最后,本文详述了CMake
recommend-type

前端和后端是什么

<think>嗯,用户问的是前端和后端是什么,得先理清楚这两个概念的基本定义。首先,前端和后端通常是指Web开发中的两个主要部分,但可能也涉及其他领域,比如移动应用或桌面软件。不过大多数情况下,用户可能是在问Web开发相关的内容,所以先从Web的角度来介绍比较合适。 接下来需要确定用户的知识水平。如果用户是刚入门的小白,可能需要用更通俗易懂的例子来解释,避免使用太多技术术语。比如,把前端比作餐厅的菜单和装修,后端比作厨房和厨师,这样用户可能更容易理解两者的分工和协作。 然后要考虑前端和后端的具体职责。前端主要负责用户界面和交互,比如HTML、CSS和JavaScript,这些都是用户直接看
recommend-type

Xerces-C 3.1.3版本发布:C++ XML解析库

标题和描述中未提供具体的信息,但是根据标签“xerces c 3.1.3”和提供的压缩包子文件名称列表“xerces-c-3.1.3”,我们可以推断出这指的是一个特定版本的Xerces-C库。 ### 知识点: #### Xerces-C介绍 Xerces-C是一个开源的C++语言实现的XML解析库,它是Apache Xerces系列的一部分,用于解析和验证XML文档。Xerces-C提供了全面的DOM、SAX和Pull解析器。它支持Unicode以及各种编码格式,并确保了对XML规范的完整支持。 #### 版本3.1.3 版本3.1.3是指Xerces-C库的一个特定版本。软件版本号通常由三部分组成:主版本号、次版本号和修订号。版本号的每一次改变通常代表着不同层面的更新,例如: - 主版本号变化可能意味着重大的功能变更或重写; - 次版本号的变化可能表示有新的功能加入或重要的改进; - 修订号的变化通常是为了解决bug或进行微小的改进。 #### 应用场景 Xerces-C库广泛应用于需要处理XML数据的应用程序中。例如,Web服务、文档转换工具、数据交换、数据存储等场景都可能用到XML解析技术。由于其跨平台的特性,Xerces-C可以被用于各种操作系统环境中。 #### 核心特性 - **DOM解析器:** 提供一种以节点树的形式来表示文档结构的解析方式,适用于需要随机访问文档的场景。 - **SAX解析器:** 采用事件驱动的模型,逐个处理文档中的事件,适用于流式处理文档的场景。 - **Pull解析器:** 类似于SAX,但解析过程可由客户端代码驱动,提供了更细粒度的事件控制。 - **验证支持:** 能够根据XML Schema、DTD等验证文档的有效性。 - **支持Unicode和各种编码:** 确保了库可以处理各种语言和特殊字符集的XML文档。 #### 安装与配置 通常,用户可以通过源代码编译安装Xerces-C,或者从包管理器安装预编译的二进制包。安装Xerces-C后,需要配置编译器和链接器以包含头文件路径和链接库。 #### API Xerces-C的API设计遵循C++的习惯用法,提供了丰富的类和接口供开发者使用。开发者需要熟悉其API来有效地利用库的功能。 #### 兼容性 版本3.1.3的Xerces-C兼容C++ 98标准,不过版本更新后可能支持更新的C++标准,比如C++11。开发者需要根据自己的项目需求选择合适的版本。 #### 社区与支持 Xerces-C是Apache软件基金会的项目,因此它拥有活跃的开发者社区和丰富的文档资源。用户在遇到问题时,可以在邮件列表、论坛和文档中寻求帮助。 #### 许可证 Xerces-C基于Apache许可证发布,该许可证允许用户免费地使用、修改和分发代码,适用于商业和非商业用途。 #### 更新与维护 软件项目通常会持续更新,修复bug、增加新功能和提高性能。开发者应关注官方发布的新版本,了解新版本的特性并决定是否升级自己的应用程序。 #### 应用案例 在现实世界的软件中,Xerces-C经常被用于处理XML数据的场景,例如在进行Web服务通信时解析SOAP消息,或者在企业应用中处理业务文档的交换等。 #### 其他版本 Xerces-C库随着时间的推移不断更新,每个新版本都可能引入新的特性和改进。因此开发者需要了解不同版本之间的差异,以便选择最适合自己项目的版本。 #### 注意事项 在使用Xerces-C时,开发者需要注意内存管理问题,比如在DOM解析器中可能会涉及到节点的创建和销毁。适当的内存管理可以防止内存泄漏和程序崩溃的问题。 通过以上的知识点,可以详细了解Xerces-C 3.1.3版本的功能、使用场景、安装配置和潜在的维护问题。开发者在使用该库进行开发时,应充分考虑这些知识点,以确保开发出高效、稳定的应用程序。
recommend-type

【板框式压滤机PLC选型秘籍】:10个关键步骤助你轻松选型

# 摘要 本文主要探讨板框式压滤机的PLC选型问题,首先概述了PLC选型的重要性及其在压滤机工作原理中的作用。接着详细分析了PLC选型的关键要素,包括输入/输出(I/O)需求的确定、性能指标的考量,以及环境因素的影响。文中通过实际案例,剖析了典型压滤机PLC选型的过程,并提出了硬件配置优化、软件编程和系统集成的建议。最后,文章指出并分析了PLC
手机看
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回
顶部