利用随机森林算法,对iris数据集采用5折交叉验证完成数据分类并对算法进行性能分析,包括ACC、precision、recall、ap.给出Python代码和注释
时间: 2024-05-10 07:14:32 浏览: 126
PHP语言基础知识详解及常见功能应用.docx
好的,以下是Python代码和注释:
```python
# 导入所需的库
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_validate
# 加载iris数据集
iris = load_iris()
# 初始化随机森林分类器
rfc = RandomForestClassifier()
# 进行5折交叉验证,计算ACC、precision、recall、ap
scoring = ['accuracy', 'precision_macro', 'recall_macro', 'average_precision']
scores = cross_validate(rfc, iris.data, iris.target, cv=5, scoring=scoring)
# 输出性能分析结果
print("ACC: %0.2f (+/- %0.2f)" % (scores['test_accuracy'].mean(), scores['test_accuracy'].std() * 2))
print("Precision: %0.2f (+/- %0.2f)" % (scores['test_precision_macro'].mean(), scores['test_precision_macro'].std() * 2))
print("Recall: %0.2f (+/- %0.2f)" % (scores['test_recall_macro'].mean(), scores['test_recall_macro'].std() * 2))
print("AP: %0.2f (+/- %0.2f)" % (scores['test_average_precision'].mean(), scores['test_average_precision'].std() * 2))
```
注释:
1. 导入所需的库:
```python
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_validate
```
2. 加载iris数据集:
```python
iris = load_iris()
```
3. 初始化随机森林分类器:
```python
rfc = RandomForestClassifier()
```
4. 进行5折交叉验证,计算ACC、precision、recall、ap:
```python
scoring = ['accuracy', 'precision_macro', 'recall_macro', 'average_precision']
scores = cross_validate(rfc, iris.data, iris.target, cv=5, scoring=scoring)
```
这里使用了`cross_validate`函数进行交叉验证,`cv=5`表示采用5折交叉验证,`scoring`参数用于指定需要计算的性能指标。
5. 输出性能分析结果:
```python
print("ACC: %0.2f (+/- %0.2f)" % (scores['test_accuracy'].mean(), scores['test_accuracy'].std() * 2))
print("Precision: %0.2f (+/- %0.2f)" % (scores['test_precision_macro'].mean(), scores['test_precision_macro'].std() * 2))
print("Recall: %0.2f (+/- %0.2f)" % (scores['test_recall_macro'].mean(), scores['test_recall_macro'].std() * 2))
print("AP: %0.2f (+/- %0.2f)" % (scores['test_average_precision'].mean(), scores['test_average_precision'].std() * 2))
```
这里使用了字符串格式化输出结果,`mean()`函数用于计算平均值,`std()`函数用于计算标准差。`(+/- %0.2f)`表示标准差的范围。
阅读全文