始化/反初始化函数:

时间: 2024-10-17 21:04:20 浏览: 16
初始化函数和析构函数是C++编程中两个特殊的成员函数,它们分别在对象创建和销毁时自动调用。 1. **构造函数(Constructor)**:当一个新对象被创建时,构造函数会被调用。它用于初始化对象的属性或完成必要的设置。构造函数通常没有返回值,名字与类名相同,并且如果有多于一个,可以有重载的形式,以适应不同类型的数据传递。 示例: ```cpp class MyClass { public: MyClass(int value) { // 构造函数,接受一个int参数 myValue = value; } // 更多初始化内容... }; ``` 2. **析构函数(Destructor)**:当对象不再存在,即将被删除时,析构函数会被调用。它的主要任务是清理资源,如释放内存、关闭文件等。析构函数也是无返回值,前缀为`~`,与类名相反。 示例: ```cpp class MyClass { ~MyClass() { // 析构函数 delete[] myMemory; // 清理内存 } // 其他可能的清理操作... }; ```
相关问题

写一个用STM32F103C8T6通过OLED初始化的代码

### 回答1: 以下是STM32F103C8T6通过OLED初始化的代码示例,这是一个C语言的实现。它初始化了128x64的OLED显示器,使用I2C通信。 ``` #include "stm32f10x.h" #include "stdio.h" #include "string.h" #include "oled.h" #define OLED_SCL_L() GPIO_ResetBits(GPIOB,GPIO_Pin_10)//SCL #define OLED_SCL_H() GPIO_SetBits(GPIOB,GPIO_Pin_10) #define OLED_SDA_L() GPIO_ResetBits(GPIOB,GPIO_Pin_11)//SDA #define OLED_SDA_H() GPIO_SetBits(GPIOB,GPIO_Pin_11) #define OLED_SDA_Read() GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_11) /**********定义字符点阵**********/ const unsigned char F8X16[]= { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xF8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x33,0x30,0x00,0x00,0x00, 0x00,0x10,0x0C,0x06,0x10,0x0C,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x40,0xC0,0x78,0x40,0xC0,0x78,0x40,0x00,0x00,0x04,0x3F,0x04,0x04,0x3F,0x04,0x00, 0x00,0x10,0x20,0x7F,0x20,0x10,0x00,0x00,0x00,0x04,0x0E,0x1F,0x0E,0x04,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x06,0x06,0x00,0x00,0x00, 0x00,0x00,0x00,0x7C,0x60,0x7C,0x60,0x ### 回答2: #include "stm32f10x.h" #include "stdlib.h" // 包含stdlib头文件用于使用malloc函数 #define SCREEN_WIDTH 128 #define SCREEN_HEIGHT 64 // 定义OLED引脚连接的引脚 #define OLED_SCL_PORT GPIOB #define OLED_SCL_PIN GPIO_Pin_6 #define OLED_SDA_PORT GPIOB #define OLED_SDA_PIN GPIO_Pin_7 #define OLED_RST_PORT GPIOB #define OLED_RST_PIN GPIO_Pin_8 // OLED初始化函数声明 void OLED_Init(void); int main(void) { // 启动OLED屏幕初始化 OLED_Init(); while(1) { // 在这里可以编写其他逻辑代码 } } void Delay_ms(uint32_t ms) { uint32_t i; for(i=0;i<ms;i++) { int j=50000; while(j--) { __NOP(); } } } void IIC_Start(void) { GPIO_SetBits(OLED_SCL_PORT, OLED_SCL_PIN); // 拉高时钟线 GPIO_SetBits(OLED_SDA_PORT, OLED_SDA_PIN); // 拉高数据线 Delay_ms(2); GPIO_ResetBits(OLED_SDA_PORT, OLED_SDA_PIN); // 拉低数据线 Delay_ms(2); GPIO_ResetBits(OLED_SCL_PORT, OLED_SCL_PIN); // 拉低时钟线 Delay_ms(2); } void IIC_Stop(void) { GPIO_SetBits(OLED_SCL_PORT, OLED_SCL_PIN); // 拉高时钟线 GPIO_ResetBits(OLED_SDA_PORT, OLED_SDA_PIN); // 拉低数据线 Delay_ms(2); GPIO_SetBits(OLED_SDA_PORT, OLED_SDA_PIN); // 拉高数据线 Delay_ms(2); } void Write_IIC_Command(uint8_t cmd) { GPIO_ResetBits(OLED_SCL_PORT, OLED_SCL_PIN); // 拉低时钟线 for (uint8_t i = 0; i < 8; i++) { if ((cmd & 0x80) == 0x80) { GPIO_SetBits(OLED_SDA_PORT, OLED_SDA_PIN); // 拉高数据线 } else { GPIO_ResetBits(OLED_SDA_PORT, OLED_SDA_PIN); // 拉低数据线 } Delay_ms(2); GPIO_SetBits(OLED_SCL_PORT, OLED_SCL_PIN); // 拉高时钟线 Delay_ms(2); GPIO_ResetBits(OLED_SCL_PORT, OLED_SCL_PIN); // 拉低时钟线 Delay_ms(2); cmd <<= 1; } } void OLED_Init(void) { // 初始化GPIO引脚 GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = OLED_SCL_PIN; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(OLED_SCL_PORT, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = OLED_SDA_PIN; GPIO_Init(OLED_SDA_PORT, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = OLED_RST_PIN; GPIO_Init(OLED_RST_PORT, &GPIO_InitStructure); // 片选OLED显示模块 GPIO_SetBits(OLED_RST_PORT, OLED_RST_PIN); Delay_ms(100); GPIO_ResetBits(OLED_RST_PORT, OLED_RST_PIN); Delay_ms(100); GPIO_SetBits(OLED_RST_PORT, OLED_RST_PIN); // OLED初始化 Write_IIC_Command(0xAE); // 关闭显示 Write_IIC_Command(0x20); // 设置寻址模式(0x00:列地址模式,0x02:页地址模式) Write_IIC_Command(0x10); // 设置列地址 启始点为0x02 0x00~0x07启示点 Write_IIC_Command(0xB0); // 设置页地址(0xB0~0xB7) Write_IIC_Command(0xC8); // 设置COM映射方式(0xC0:COM0为地位,0xC8:COM0为高位) Write_IIC_Command(0x00); // 设置低列地址 Write_IIC_Command(0x10); // 设置高列地址 Write_IIC_Command(0x40); // 设置起始行地址 Write_IIC_Command(0x81); // 设置对比度控制寄存器 Write_IIC_Command(0xCF); // 设置对比度(0x00~0xFF) Write_IIC_Command(0xA1); // 设置段重定义(0xA0:列地址0~127,0xA1:列地址127~0) Write_IIC_Command(0xA4); // 设置显示全部点亮(不设置显示全部点亮:0xA4) Write_IIC_Command(0xA6); // 设置非反显模式(0xA6:正显,0xA7:反显) Write_IIC_Command(0xAF); // 打开显示 } ### 回答3: 以下是一个使用STM32F103C8T6通过OLED初始化的示例代码: ```c #include "stm32f1xx.h" #include "OLED.h" GPIO_InitTypeDef GPIO_InitStruct; void GPIO_Configuration(void) { __HAL_RCC_GPIOC_CLK_ENABLE(); GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Pin = GPIO_PIN_13; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); } void SPI_Configuration(void) { __HAL_RCC_SPI1_CLK_ENABLE(); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Pin = GPIO_PIN_5 | GPIO_PIN_7; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_6; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 7; HAL_SPI_Init(&hspi1); } void OLED_Init(void) { GPIO_Configuration(); SPI_Configuration(); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_RESET); HAL_Delay(10); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_SET); HAL_Delay(10); HAL_SPI_Transmit(&hspi1, (uint8_t *)OLED_InitData, sizeof(OLED_InitData), HAL_MAX_DELAY); HAL_Delay(10); HAL_SPI_Transmit(&hspi1, (uint8_t *)OLED_SetPositionData, sizeof(OLED_SetPositionData), HAL_MAX_DELAY); HAL_Delay(10); HAL_SPI_Transmit(&hspi1, (uint8_t *)OLED_DisplayOnData, sizeof(OLED_DisplayOnData), HAL_MAX_DELAY); HAL_Delay(10); } int main(void) { HAL_Init(); OLED_Init(); while (1) { // 在这里添加你的代码 } } ``` 此示例代码基于STM32的HAL库编写,并通过SPI与OLED通信。在初始化过程中,先设置了GPIO和SPI的配置信息,然后通过SPI与OLED通信发送初始化命令和显示控制命令,实现OLED的初始化操作。接下来,你可以在 `while (1)` 循环中添加自己的代码来控制OLED显示内容。请注意,代码中的 `OLED_InitData`、`OLED_SetPositionData` 和 `OLED_DisplayOnData` 是预先定义好的OLED初始化数据。
阅读全文

相关推荐

最新推荐

recommend-type

c++ 子类构造函数初始化及父类构造初始化的使用

"C++ 子类构造函数初始化及父类构造初始化的使用" C++ 中的构造函数初始化是指在类对象创建时对其进行初始化的过程。构造函数是类的特殊成员函数,用于初始化类对象。在 C++ 中,子类构造函数的初始化涉及到父类...
recommend-type

Bootstrap table表格初始化表格数据的方法

在本文中,我们将深入探讨如何初始化Bootstrap Table的表格数据,以及与之相关的配置选项和方法。 首先,让我们了解基本的HTML结构。在Bootstrap Table中,表格通常被包含在一个具有`table-responsive`类的`div`...
recommend-type

C++全局变量初始化的一点总结

动态初始化则涉及运行时的动作,比如需要函数调用或类构造函数的初始化。这些变量的初始化在main函数执行之前进行,但晚于静态初始化。这意味着如果一个全局变量依赖于其他全局变量的初始化结果,必须确保这些依赖的...
recommend-type

Java中static静态变量的初始化完全解析

`B`类的`plus`变量也会被初始化,导致`A`类的构造函数执行,进一步影响`A`类的静态变量。这个过程会导致一些复杂的交互,需要仔细分析代码来确定确切的顺序和值。 总的来说,理解Java中静态变量的初始化顺序对于...
recommend-type

C++类的静态成员初始化详细讲解

这里我们将深入探讨静态成员的初始化,特别是针对整型和枚举型const静态成员的初始化规则。 首先,静态数据成员通常在类声明中被声明,然后在包含类方法实现的源文件中进行初始化。例如: ```cpp class Test { ...
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。