2FSK的调制解调matlab代码

时间: 2023-11-18 10:05:44 浏览: 22
以下是2FSK调制解调的MATLAB代码示例: % 2FSK调制解调 clc; clear all; close all; % 参数设置 Fs = 10000; % 采样率 Fc1 = 1000; % 信号1载频频率 Fc2 = 2000; % 信号2载频频率 Tb = 1/100; % 一个比特的时间 Eb = 1; % 比特能量 A = sqrt(2*Eb/Tb); % 信号幅度 % 生成发送数据 data = [1 0 1 1 0 1 0 0 1 0]; N = length(data); % 生成调制信号 t = 0 : 1/Fs : Tb-1/Fs; s1 = A*cos(2*pi*Fc1*t); s2 = A*cos(2*pi*Fc2*t); tx = []; for i = 1:N if data(i) == 0 tx = [tx s1]; else tx = [tx s2]; end end % 加入高斯白噪声 noise_power = 0.1; % 噪声功率 rx = awgn(tx, noise_power, 'measured'); % 解调信号 t = 0 : 1/Fs : N*Tb-1/Fs; rx1 = rx.*cos(2*pi*Fc1*t); rx2 = rx.*cos(2*pi*Fc2*t); bits = []; for i = 1:N s1_energy = sum(rx1((i-1)*Fs*Tb+1:i*Fs*Tb).^2); s2_energy = sum(rx2((i-1)*Fs*Tb+1:i*Fs*Tb).^2); if s1_energy > s2_energy bits = [bits 0]; else bits = [bits 1]; end end % 绘制发送信号、接收信号和解调结果 figure; subplot(3,1,1); plot(tx); title('发送信号'); subplot(3,1,2); plot(rx); title('接收信号'); subplot(3,1,3); plot(bits); title('解调结果'); xlabel('比特序号'); 其中,生成发送数据部分,我使用了一个长度为10的数据序列,你可以根据需要进行更改。在加入噪声后,我使用了cosine 波形解调接收信号,并比较两个载频的能量值,选择能量更大的那个作为解调结果。最后,我绘制了发送信号、接收信号和解调结果的图形。

相关推荐

2FSK(二进制频移键控)是一种数字调制技术,其中两个不同的频率表示两个二进制状态。在MATLAB中,可以使用以下步骤进行2FSK调制解调: 1. 生成二进制数据序列:使用randi函数生成随机的二进制数据序列,例如: data = randi([0 1],100,1); 2. 将二进制数据序列转换为数字信号:使用bi2de函数将二进制数据序列转换为数字信号,例如: signal = bi2de(reshape(data,[2,length(data)/2]).','left-msb'); 这里将二进制数据序列分为两个二进制位一组,然后使用reshape函数将其重新排列,最后使用bi2de函数将其转换为数字信号。 3. 生成载波信号:生成两个不同频率的正弦波信号作为载波信号,例如: fc1 = 1000; % 第一个载波频率为1000Hz fc2 = 2000; % 第二个载波频率为2000Hz t = 0:0.0001:0.01; % 生成时间序列 carrier1 = sin(2*pi*fc1*t); % 第一个载波信号 carrier2 = sin(2*pi*fc2*t); % 第二个载波信号 4. 进行2FSK调制:将数字信号与载波信号相乘,然后相加得到2FSK调制信号,例如: fsk_signal = carrier1.*(signal==0) + carrier2.*(signal==1); 这里使用了逻辑运算符将数字信号转换为调制信号。 5. 进行2FSK解调:将2FSK调制信号与两个载波信号相乘,然后进行积分得到解调信号,例如: demod_signal1 = abs(conv(fsk_signal,carrier1,'same')); % 第一个载波解调信号 demod_signal2 = abs(conv(fsk_signal,carrier2,'same')); % 第二个载波解调信号 demod_signal = (demod_signal1 > demod_signal2); % 根据解调信号大小判断二进制状态 这里使用了卷积运算将2FSK调制信号与两个载波信号相乘,然后使用abs函数进行取模运算,最后根据解调信号大小判断二进制状态。
以下是2FSK调制和解调的MATLAB代码示例: 调制: matlab clear all; close all; clc; % 定义参数 fc1 = 500; % 第一个载波频率 fc2 = 1500; % 第二个载波频率 fs = 8000; % 采样频率 T = 1/fs; % 采样时间 t = 0:T:1-T; % 时间序列 fdev = 100; % 频偏 A = 1; % 振幅 % 输入二进制信号 M = 10; % 信息位数 data = randi([0 1],1,M); % 随机生成信息序列 % 2FSK调制 f = zeros(1,length(t)); % 频率序列 for i = 1:M if data(i) == 0 f = f + (fc1 + fdev*sin(2*pi*(fc2-fc1)/T*t))*T; % 发送频率为fc1+fdev else f = f + (fc2 + fdev*sin(2*pi*(fc2-fc1)/T*t))*T; % 发送频率为fc2+fdev end end % 显示发送信号 plot(t,f) xlabel('时间(s)') ylabel('信号幅度') title('2FSK调制信号波形') % 音频播放 sound(A*sin(2*pi*f),fs); 解调: matlab clear all; close all; clc; % 定义参数 fc1 = 500; % 第一个载波频率 fc2 = 1500; % 第二个载波频率 fs = 8000; % 采样频率 T = 1/fs; % 采样时间 t = 0:T:1-T; % 时间序列 fdev = 100; % 频偏 A = 1; % 振幅 W = 2*pi*fdev/(fc2-fc1); % 调制指数 N = length(t); % 采样点数 % 2FSK调制 M = 10; % 信息位数 data = randi([0 1],1,M); % 随机生成信息序列 f = zeros(1,length(t)); % 频率序列 for i = 1:M if data(i) == 0 f = f + (fc1 + fdev*sin(2*pi*(fc2-fc1)/T*t))*T; % 发送频率为fc1+fdev else f = f + (fc2 + fdev*sin(2*pi*(fc2-fc1)/T*t))*T; % 发送频率为fc2+fdev end end % 接收信号 y = A*sin(2*pi*f); % 接收到的信号 sound(y,fs); % 播放接收到的声音 % 2FSK解调 data_hat = zeros(1,M); % 估计的信息序列 for i = 1:M % 解调第i个符号 yt = y((i-1)*N/M+1:i*N/M); % 获取第i个符号的采样点 f1 = fc1 + fdev*sin(2*pi*(fc2-fc1)/T*t((i-1)*N/M+1:i*N/M)); % 发送频率为fc1+fdev f2 = fc2 + fdev*sin(2*pi*(fc2-fc1)/T*t((i-1)*N/M+1:i*N/M)); % 发送频率为fc2+fdev D1 = sum(yt.*sin(2*pi*f1*T)); % 计算接收信号在fc1上的投影 D2 = sum(yt.*sin(2*pi*f2*T)); % 计算接收信号在fc2上的投影 if D1 > D2 data_hat(i) = 0; else data_hat(i) = 1; end end % 显示估计的信息序列 disp('发送的信息序列:'); disp(data); disp('估计的信息序列:'); disp(data_hat); 在运行以上代码时,请确保已经安装了MATLAB并正确配置了音频设备。
4FSK调制解调是数字通信中的一种常见技术,可以高效地传输数字信号。MATLAB是一款非常强大的数学计算软件,也可以用来进行数字信号处理。下面将介绍如何使用MATLAB实现4FSK调制解调。 首先,我们需要定义4个载波频率。可以选择适当的频率,比如1000Hz、2000Hz、3000Hz和4000Hz。然后,我们要用MATLAB生成一个用于调制的数字信号。这可以通过生成“调制信号序列”来实现,其中每个数表示一个时刻的频率。在我们的例子中,我们将用1、2、3和4分别表示四个频率。 接着,我们将对这个数字信号进行4FSK调制。这可以使用一个双极性调制方案来实现,即如果数字信号为“1”,则选择一个正相的载波;如果数字信号为“0”,则选择一个负相的载波。这样,我们就可以将数字信号转换为模拟信号,并用该信号传输数据。 在接收端,我们将使用4FSK解调器将模拟信号转换回数字信号。这可以通过利用离散傅里叶变换(DFT)来实现,对于每个离散时刻,我们可以计算出信号的频谱,并根据频率大小确定数字信号的值。最后,我们将根据数字信号序列还原出原始信息。 总之,MATLAB是一款非常适用于数字信号处理和通信系统设计的软件。通过合理地定义载波频率和信号序列,我们可以利用MATLAB实现4FSK调制解调,从而完成数字信号的高效传输。
FSK调制与解调是一种常见的数字调制和解调技术,用于将数字信号转换为模拟信号以便传输以及将接收到的模拟信号恢复为数字信号。 在MATLAB中,可以使用一些基本的函数来实现FSK调制与解调。下面是一些常见函数的示例代码: 1. FSK调制: matlab % 参数设置 fs = 1000; % 采样率 f1 = 10; % 第一个频率 f2 = 20; % 第二个频率 t = 0:1/fs:1; % 时间序列 % 原始数字信号 data = [0 1 0 1 1]; % 需要调制的数字信号 % FSK调制 modulated_signal = cos(2*pi*f1*t.*(data')+2*pi*f2*t.*(~data')); % 调制信号 % 绘制调制信号 plot(modulated_signal); xlabel('时间'); ylabel('调制信号'); title('FSK调制信号'); 2. FSK解调: matlab % 参数设置 fs = 1000; % 采样率 f1 = 10; % 第一个频率 f2 = 20; % 第二个频率 t = 0:1/fs:1; % 时间序列 % 接收到的模拟信号 received_signal = modulated_signal; % 假设接收到的信号为调制后的信号 % FSK解调 demodulated_data = received_signal.*cos(2*pi*f1*t) - received_signal.*cos(2*pi*f2*t); % 解调信号 % 绘制解调信号 plot(demodulated_data); xlabel('时间'); ylabel('解调信号'); title('FSK解调信号'); % 二值化解调信号 threshold = 0.5; % 二值化的阈值 demodulated_data_binary = demodulated_data > threshold; % 二值化后的数字信号 % 显示解调后的数字信号 disp('解调后的数字信号:'); disp(demodulated_data_binary); 以上代码示例了如何使用MATLAB实现FSK调制与解调。调制部分使用cos函数分别乘以不同的频率来调制数字信号;解调部分使用接收到的模拟信号与不同频率的cos函数相乘,然后将结果进行二值化得到解调后的数字信号。
好的,我可以为您讲解一下如何使用 MATLAB 中的 fskmod 函数实现 2FSK 调制。 首先,我们需要了解什么是 2FSK。2FSK(2 Frequency Shift Keying)是一种基于频率的调制方式,它将数字信号转换成不同频率的正弦波信号来进行传输。在 2FSK 中,0 和 1 两个数字分别对应不同的频率,通常是将低频作为 0,高频作为 1。 接下来,我们可以使用 MATLAB 中的 fskmod 函数来实现 2FSK 调制。fskmod 函数的语法如下: matlab y = fskmod(x,M,freq_sep,nsamp,Fs) 其中, - x:要调制的数字信号向量。 - M:调制阶数,对于 2FSK 调制,M = 2。 - freq_sep:两个频率之间的频率偏移量,通常设置为正弦波的周期长度的一半,即 freq_sep = 1/(2*T),其中 T 是正弦波的周期长度。 - nsamp:每个符号所包含的采样数。 - Fs:采样率。 例如,如果要将数字信号 x = [0 1 0 0 1 1 0 1] 进行 2FSK 调制,我们可以设置如下参数: matlab M = 2; % 调制阶数 freq_sep = 1; % 频率偏移量 nsamp = 16; % 每个符号采样数 Fs = 1000; % 采样率 y = fskmod(x,M,freq_sep,nsamp,Fs); 调制后的信号 y 就是我们得到的 2FSK 调制信号。 接下来,如果要进行 2FSK 解调,我们可以使用 MATLAB 中的 fskdemod 函数,其语法如下: matlab z = fskdemod(y,M,freq_sep,nsamp,Fs) 其中, - y:要解调的 2FSK 调制信号。 - M:调制阶数,对于 2FSK 调制,M = 2。 - freq_sep:两个频率之间的频率偏移量,通常设置为正弦波的周期长度的一半,即 freq_sep = 1/(2*T),其中 T 是正弦波的周期长度。 - nsamp:每个符号所包含的采样数。 - Fs:采样率。 例如,如果要对上述调制后的信号 y 进行解调,我们可以设置如下参数: matlab M = 2; % 调制阶数 freq_sep = 1; % 频率偏移量 nsamp = 16; % 每个符号采样数 Fs = 1000; % 采样率 z = fskdemod(y,M,freq_sep,nsamp,Fs); 解调后的信号 z 就是我们得到的原始数字信号。 希望这些信息可以帮助您实现 2FSK 调制解调。
4FSK调制与解调是一种基于4个离散频率的数字调制和解调技术。调制是将数字信号转换为模拟信号,而解调则是将模拟信号转换回数字信号。MATLAB是一款强大的数学软件,非常适合用于实现4FSK调制和解调算法。 要实现4FSK调制,首先需要将输入的数字信号进行二进制到十进制的转换。然后,根据所选的调制频率设定,将十进制数字映射到对应的频率上。利用这四个离散频率信号中的一个,进行调制生成模拟信号。 在MATLAB中,可以使用离散正弦波信号的方法实现4FSK调制。根据输入的数字信号和调制频率,可以使用for循环依次生成每个离散频率上的正弦波信号,然后将它们加和得到调制后的模拟信号。 要实现4FSK解调,首先需要将接收到的模拟信号进行分频处理,将其转换为离散信号。然后,可以使用相关性检测方法判断分频后的信号与4个离散频率信号之间的相关性,找到最相关的信号。 在MATLAB中,可以使用相关性度量方法(如互相关或相干性)实现4FSK解调。对分频后的信号逐个与4个离散频率上的信号进行相关性计算,找到最大相关性的信号,即为输入的数字信号。 总结起来,通过在MATLAB中使用离散正弦波信号的生成和相关性检测方法,可以实现4FSK调制和解调算法。这样就可以将数字信号转换为模拟信号,或将模拟信号转换回数字信号。

最新推荐

基于MATLAB的2FSK调制及仿真.doc

基于MATLAB的2FSK调制及仿真本文通过分别用Matlab、Simulink、System view设计2FSK调制与解调的仿真,深入了解数字频率调制2FSK的基本原理,掌握用现代通信仿真技术对解调与调制的实现,深刻理解Matlab、Simulink...

300126锐奇股份财务报告资产负债利润现金流量表企业治理结构股票交易研发创新等1391个指标(2007-2022).xlsx

包含1391个指标,其说明文档参考: https://blog.csdn.net/yushibing717/article/details/136115027 数据来源:基于上市公司公告数据整理 数据期间:从具体上市公司上市那一年开始-2022年度的数据,年度数据 包含各上市公司股票的、多年度的上市公司财务报表资产负债表、上市公司财务报表利润表、上市公司财务报表现金流量表间接法、直接法四表合在一个面板里面,方便比较和分析利用 含各个上市公司股票的、多年度的 偿债能力 披露财务指标 比率结构 经营能力 盈利能力 现金流量分析 风险水平 发展能力 每股指标 相对价值指标 股利分配 11类财务指标分析数据合在一个面板里面,方便比较和分析利用 含上市公司公告的公司治理、股权结构、审计、诉讼等数据 包含1391个指标,如: 股票简称 证券ID 注册具体地址 公司办公地址 办公地址邮政编码 董事会秘书 董秘联系电话 董秘传真 董秘电子邮箱 ..... 货币资金 其中:客户资金存款 结算备付金 其中:客户备付金 .........

【路径规划】基于matlab原子搜索算法栅格地图机器人最短路径规划【含Matlab源码 2887期】.mp4

CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作

DAC简介及参考电路PPT学习教案.pptx

DAC简介及参考电路PPT学习教案.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

OceanBase数据库简介及原理解析

# 1. OceanBase数据库概述 ## 1.1 OceanBase数据库的发展历程 OceanBase数据库是由阿里巴巴集团自主研发的一款分布式关系型数据库系统,起源于阿里集团的业务需求和技术挑战。自2010年开始研发,经过多年的迭代和优化,OceanBase已经成为阿里巴巴集团重要的核心数据库产品之一。在实际的业务场景中,OceanBase已经被广泛应用于金融、电商、物流等各个领域。 ## 1.2 OceanBase数据库的特点和优势 OceanBase数据库具有以下特点和优势: - **分布式架构**:OceanBase采用多副本分布式架构,可以实现高可用和数据容灾。 -

python的pandas读取excel怎么将excel表里的列从1开始而不是0

在 Pandas 中,数据框的列默认从0开始编号,但我们可以通过自定义函数来进行数据列的转换。可以先将读取的数据框列的第一个值设为1,然后对后续列进行递增处理。 以下是示例代码: ```python import pandas as pd # 读取 Excel 文件 df = pd.read_excel('your_excel_file.xlsx') # 定义函数将列从1开始 def reset_column(x): return str(int(x) + 1) # 应用函数到所有列名 df = df.rename(columns=reset_column) # 打印数据框

第三章薪酬水平、薪酬系统的运行与控制.pptx

第三章薪酬水平、薪酬系统的运行与控制.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

理解MVC架构:Laravel框架的核心设计

# 1. 第1章 项目立项与概述 ## 1.1 动机 随着互联网的快速发展,Web应用的开发需求不断增加。为了提高开发效率、代码可维护性和团队协作效率,我们决定采用MVC架构来设计我们的Web应用。 ## 1.2 服务器状态 我们的服务器环境采用了LAMP(Linux + Apache + MySQL + PHP)架构,满足了我们Web应用开发的基本需求,但为了更好地支持MVC架构,我们将对服务器进行适当的配置和优化。 ## 1.3 项目立项 经过团队讨论和决定,决定采用Laravel框架来开发我们的Web应用,基于MVC架构进行设计和开发,为此做出了项目立项。 ## 1.4 项目概况