编写代码基于python的手势识别
时间: 2023-09-30 08:01:35 浏览: 104
简单手势识别python源代码.zip
手势识别是一个广泛研究的领域,有很多不同的方法和技术。以下是一个基于OpenCV和深度学习的手势识别的Python代码示例,它可以识别数字手势(0到5):
首先,需要安装OpenCV和Keras库。可以使用以下命令进行安装:
```
pip install opencv-python
pip install keras
```
然后,我们需要准备手势数据集。可以使用OpenCV捕获手势图像并将其转换为数字手势。我们将使用MNIST数据集进行模型训练。
接下来,我们需要定义模型。这里我们使用一个简单的卷积神经网络(CNN):
```python
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D
def create_model():
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(28, 28, 1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(6, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
```
然后,我们可以进行模型训练:
```python
import cv2
import numpy as np
from keras.utils import np_utils
# Load data
data = np.load('data.npy')
labels = np.load('labels.npy')
# Convert labels to one-hot encoding
labels = np_utils.to_categorical(labels)
# Reshape data to 4D tensor
data = data.reshape(data.shape[0], 28, 28, 1)
# Split data into training and testing sets
train_data = data[:1200]
train_labels = labels[:1200]
test_data = data[1200:]
test_labels = labels[1200:]
# Train model
model = create_model()
model.fit(train_data, train_labels, validation_data=(test_data, test_labels), epochs=10, batch_size=64)
```
最后,我们可以使用OpenCV捕获实时视频,并在其中检测手势。以下是一个简单的代码示例:
```python
import cv2
import numpy as np
model = create_model()
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
# Preprocess frame
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)
_, thresh = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY_INV)
# Find contours
_, contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Get largest contour
if contours:
contour = max(contours, key=cv2.contourArea)
if cv2.contourArea(contour) > 10000:
# Get bounding box
x, y, w, h = cv2.boundingRect(contour)
# Extract hand ROI
roi = gray[y:y+h, x:x+w]
roi = cv2.resize(roi, (28, 28))
roi = roi.reshape(1, 28, 28, 1)
roi = roi.astype('float32')
roi /= 255
# Predict digit
pred = model.predict(roi)
digit = np.argmax(pred[0])
# Draw bounding box and digit label
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(frame, str(digit), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2)
cv2.imshow('frame', frame)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
在这个代码示例中,我们首先使用OpenCV捕获实时视频,并在其中检测手势。然后,我们对每一帧进行预处理,获取手势的ROI,并使用我们训练好的模型对其进行数字预测。最后,我们在视频中绘制手势的边界框和数字标签。
请注意,这只是一个简单的示例,还有很多优化和改进的空间。
阅读全文