请用分支限界法解决此问题:给定一个m×n的网格,每个格子上包含一个非负整数。在网格上移动时,每次只能向下或者向右移动一步。请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

时间: 2024-06-02 10:11:14 浏览: 21
首先我们可以将这个问题转化为图论问题,将每个格子看作一个节点,在相邻的格子之间连边,权值为对应格子上的数字。然后我们可以使用分支限界法来求解最小路径和。 具体算法如下: 1. 初始化一个优先队列,将起始节点加入队列中。 2. 对于队列中的每个节点,从该节点向下和向右扩展,得到两个新节点。如果新节点不越界,就计算新节点的代价,即从起始节点到新节点的路径长度加上新节点的权值。如果新节点的代价小于当前最优解,则将新节点加入队列中。 3. 重复执行步骤2直到队列为空或者找到终点节点。 4. 如果找到了终点节点,则返回该节点的代价作为最小路径和;否则返回无解。 代码实现如下:
相关问题

分支限列法与回溯法那个更好解决给定一个m×n的网格,每个格子上包含一个非负整数。在网格上移动时,每次只能向下或者向右移动一步。请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小

对于这个问题,分支限界法和回溯法都可以解决。但是在效率上,分支限界法更优秀一些。 回溯法的思路是,从左上角开始,每次向下或向右移动一步,直到到达右下角。在过程中记录路径上的数字总和,找到最小的数字总和路径。但是回溯法会涉及到很多重复计算,效率较低。 而分支限界法将问题分解成若干个子问题,每个子问题都是一个网格上的点。对于每个子问题,计算出从左上角到该点的最小数字总和,并将该点相邻的子问题加入到待处理队列中。在处理队列中,选择下一个最有可能找到最小数字总和路径的子问题进行处理。通过选择最优的子问题,可以避免回溯法中的重复计算,提高效率。 因此,分支限界法更适合解决这个问题。

给定一个m×n的网格,每个格子上包含一个非负整数。在网格上移动时,每次只能向下或者向右移动一步。请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。请用分支限界法解决该问题,使用java语言。样列1: 输入:grid = [[1,3,1],[1,5,1],[4,2,1]] 输出:7 解释:因为路径 1→3→1→1→1 的总和最小。

以下是使用Java实现分支限界法求解该问题的代码: ``` import java.util.*; public class MinPathSum { static class Node implements Comparable<Node> { int i, j, sum; public Node(int i, int j, int sum) { this.i = i; this.j = j; this.sum = sum; } public int compareTo(Node o) { return sum - o.sum; } } public static int minPathSum(int[][] grid) { int m = grid.length; int n = grid[0].length; // 用数组记录到达每个节点的最小路径和 int[][] minSum = new int[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { minSum[i][j] = Integer.MAX_VALUE; } } minSum[0][0] = grid[0][0]; // 用优先队列实现分支限界搜索 PriorityQueue<Node> pq = new PriorityQueue<>(); pq.offer(new Node(0, 0, minSum[0][0])); while (!pq.isEmpty()) { Node node = pq.poll(); int i = node.i; int j = node.j; int sum = node.sum; if (i == m - 1 && j == n - 1) { // 到达目标节点,返回最小路径和 return sum; } if (i < m - 1) { // 向下走 int newSum = sum + grid[i + 1][j]; if (newSum < minSum[i + 1][j]) { // 只添加新路径和更小的节点 minSum[i + 1][j] = newSum; pq.offer(new Node(i + 1, j, newSum)); } } if (j < n - 1) { // 向右走 int newSum = sum + grid[i][j + 1]; if (newSum < minSum[i][j + 1]) { // 只添加新路径和更小的节点 minSum[i][j + 1] = newSum; pq.offer(new Node(i, j + 1, newSum)); } } } return -1; // 没有找到合法路径 } public static void main(String[] args) { int[][] grid = {{1, 3, 1}, {1, 5, 1}, {4, 2, 1}}; int minSum = minPathSum(grid); System.out.println(minSum); } } ``` 代码中使用了一个大小为 $(m+n)\times2$ 的数组 $minSum$,其中 $minSum[i][j]$ 表示到达网格 $(i,j)$ 的最小路径和。在分支限界搜索中,每次取出路径和最小的节点并尝试向下或向右走,如果新路径和比已有的更小,则记录新的最小路径和并将新节点加入优先队列中。如果搜索到达目标节点,则返回最小路径和。如果搜索结束后仍未找到合法路径,则返回 $-1$。 时间复杂度为 $O(mn\log(m+n))$,空间复杂度为 $O(mn)$。

相关推荐

最新推荐

recommend-type

动态规划法、贪心算法、回溯法、分支限界法解决0-1背包

1) 动态规划法求解问题的一般思路,动态规划法求解本问题的思路及其C/C++程序实现与算法的效率分析。...4) 分支限界法求解问题的一般思路,分支限界法求解本问题的思路及其C/C++程序实现与算法的效率分析。 有代码!!
recommend-type

2000-2021年 河北统计年鉴数据整理

该年鉴全面、系统地记录了河北省经济社会发展的历史轨迹和现状,提供了大量的统计数据和信息,是了解河北省经济社会发展情况的重要参考书籍。 河北统计年鉴涵盖了河北省各个领域的数据资料,包括经济发展、人口就业、社会事业、居民生活、环境保护等多个方面。其中,不仅有各年度河北省经济社会发展的总体情况,还有分地区、分行业的详细数据和分析报告,为各级政府、企业和学术界提供了重要的决策参考和数据支持。本数据包含原始数据、线性插值、ARIMA填补、有效值统计,说明。
recommend-type

PCHunter.zipPCHunter.zipPCHunter.zip

PCHunter.zipPCHunter.zipPCHunter.zip
recommend-type

智能运维+AIOps+传统行业落地+运维

AIOps在传统行业的落地探索主要集中在利用人工智能技术改进IT运维的效率和质量,以应对日益复杂的技术环境和日益增长的数据量。以下是几个关键领域的探索和应用实例: 1.金融业:运用AI技术预测系统故障、优化资源分配、自动识别异常模式,从而减少停机时间和提高服务质量。 2.制造业:用于预测设备故障、优化生产线效率。 3.零售业:监控销售系统、库存管理和客户交互平台,确保交易顺畅,及时发现并解决系统瓶颈,提升顾客体验。 4.医疗健康:帮助管理庞大的医疗信息系统,确保患者数据的安全性和访问速度,同时通过分析系统日志预测系统故障,保障医疗服务的连续性。 5.能源行业:能源公司利用AIOps监测智能电网、风电场和太阳能电站,优化能源分配,提高能源供应的稳定性和效率。 6.教育行业:在线教育平台和学校IT系统利用AIOps进行网络性能监控、用户行为分析和安全威胁检测,保证远程教学的流畅性和安全性。 这些探索和应用不仅提升了传统行业的运维效率,也促进了业务创新,使企业能够更好地适应数字化转型的挑战。随着AI技术的不断进步,AIOps在传统行业的应用将会更加广泛和深入。
recommend-type

Php采用Curl方法模拟登录淘宝程序代码实现taobao-data.zip

最近因为要抓取淘宝的数据,之前一直能正常抓取,某天一看数据抓取不了,调试发现问题发生在抓取的时候跳转到了淘宝登录页面,而且在抓取的程序中直接打印出结果,淘宝展示登录界面之后会迅速跳转至一个相对URL的https登录页面,此时就会进入一个无法打开的URl了。可见淘宝使用了不少的技巧来防止程序登录。基本思路也很简单,要抓取一个淘宝产品页面,输入这个产品的ID,组装产品页面的URL.然后抓取产品页数据,如页面代码中存在登录的相关字符串,则开始进行登录。原文链接:https://blog.csdn.net/weixin_47792780/article/details/137488175
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。