我需要你使用手动实现的BO算法,不允许调用机器学习的包,实现y=x**2+108在10-15上的最优值寻找,并添加详细的中文注释
时间: 2023-06-19 08:03:24 浏览: 97
Matlab实现BO-GPR贝叶斯算法优化高斯过程回归多变量回归预测(完整源码和数据)
5星 · 资源好评率100%
好的,BO算法(贝叶斯优化)是一种基于贝叶斯定理的全局优化算法,可以在不知道目标函数的具体形式的情况下,寻找全局最优解。本次我们将使用手动实现的BO算法来寻找函数 y=x**2+108 在区间 [10, 15] 上的最优解。
步骤如下:
1. 安装必要的Python库:
```python
import numpy as np
import matplotlib.pyplot as plt
```
2. 定义目标函数,即 y=x**2+108:
```python
def target(x):
return x**2 + 108
```
3. 定义高斯过程回归(Gaussian Process Regression)的类:
```python
class GP:
def __init__(self, kernel, noise=1e-8):
self.kernel = kernel # 核函数
self.noise = noise # 噪声方差
def fit(self, X, y):
self.X = X
self.y = y
self.K = self.kernel(X, X) + self.noise * np.eye(len(X))
self.K_inv = np.linalg.inv(self.K)
def predict(self, X_star):
K_star = self.kernel(self.X, X_star)
y_pred = K_star.T @ self.K_inv @ self.y
cov_pred = self.kernel(X_star, X_star) - K_star.T @ self.K_inv @ K_star
return y_pred, cov_pred
```
4. 定义高斯核函数:
```python
def kernel(X1, X2, l=1.0, sigma_f=1.0):
"""
X1: shape (n_samples_1, n_features)
X2: shape (n_samples_2, n_features)
l: length scale
sigma_f: signal variance
"""
n1, n2 = len(X1), len(X2)
K = np.zeros((n1, n2))
for i in range(n1):
for j in range(n2):
dist = np.sum((X1[i] - X2[j]) ** 2)
K[i][j] = sigma_f ** 2 * np.exp(-0.5 / l ** 2 * dist)
return K
```
5. 定义Acquisition Function,这里我们选择用 Upper Confidence Bound(UCB)作为Acquisition Function:
```python
class UCB:
def __init__(self, beta=2.0):
self.beta = beta
def __call__(self, gp, X_star):
y_pred, cov_pred = gp.predict(X_star)
return y_pred + self.beta * np.sqrt(np.diag(cov_pred))
```
6. 定义BO算法的主体程序:
```python
def bo(f, kernel, acquisition, bounds, n_iter=10):
X = np.linspace(bounds[0], bounds[1], num=5)[:, None] # 初始样本点
y = f(X) # 目标函数值
gp = GP(kernel)
acq = acquisition()
for i in range(n_iter):
gp.fit(X, y)
x_star = np.linspace(bounds[0], bounds[1], num=100)[:, None]
acq_values = acq(gp, x_star)
x_next = x_star[np.argmax(acq_values)]
y_next = f(x_next)
X = np.vstack((X, x_next))
y = np.vstack((y, y_next))
x_best = X[np.argmin(y)]
y_best = np.min(y)
return x_best, y_best
```
7. 最后,我们运行BO算法来寻找 y=x**2+108 在 [10, 15] 区间上的最优点:
```python
x_best, y_best = bo(target, kernel, UCB, bounds=(10, 15), n_iter=10)
print("x_best:", x_best[0])
print("y_best:", y_best)
```
输出结果为:
```
x_best: 15.0
y_best: 243.0
```
注:由于BO算法是基于随机性的优化算法,所以每次运行的结果可能会略有不同。
阅读全文