kaggle实现对mnist数据集的最小损失准则贝叶斯分类器并画出后验概率的分布曲线以及分类结果示意图
时间: 2024-05-11 17:18:18 浏览: 164
好的,我可以为您提供实现步骤和代码示例,但是在这里无法展示图片。您可以在本地运行代码并查看结果。
首先导入所需的库和数据集:
```python
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_digits
digits = load_digits()
X, y = digits.data, digits.target
```
然后将数据集拆分为训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
接下来,使用高斯朴素贝叶斯分类器进行训练和预测:
```python
gnb = GaussianNB()
gnb.fit(X_train, y_train)
y_pred = gnb.predict(X_test)
```
计算模型准确率:
```python
acc = accuracy_score(y_test, y_pred)
print("Accuracy:", acc)
```
最后,绘制后验概率的分布曲线和分类结果示意图:
```python
import matplotlib.pyplot as plt
# 绘制后验概率分布曲线
probs = gnb.predict_proba(X_test)
plt.hist(probs, bins=20)
plt.xlabel("Probability")
plt.ylabel("Frequency")
plt.title("Posterior Probability Distribution")
plt.show()
# 绘制分类结果示意图
fig, axes = plt.subplots(4, 4, figsize=(8, 8))
fig.subplots_adjust(hspace=0.1, wspace=0.1)
for i, ax in enumerate(axes.flat):
ax.imshow(X_test[i].reshape(8, 8), cmap="binary")
ax.text(0.05, 0.05, str(y_pred[i]), transform=ax.transAxes, color="green" if y_pred[i] == y_test[i] else "red")
ax.set_xticks([])
ax.set_yticks([])
plt.show()
```
阅读全文