X_train,X_test,y_train, y_test= cross validation.train_test_split(X_trainy_train,test_size=0.2,random_state=1)
时间: 2023-10-23 20:38:45 浏览: 87
这段代码使用了交叉验证中的train_test_split函数,将数据集X_train和y_train分为训练集和测试集,其中测试集占总数据集的20%,随机种子为1。具体来说,X_train是训练数据集的特征,y_train是训练数据集的标签,X_test是测试数据集的特征,y_test是测试数据集的标签。这样做的目的是为了在训练模型之前先将数据集分为训练集和测试集,以便评估模型的泛化能力。
相关问题
if __name__ == '__main__': file = "../datasets/识别_data.xlsx" dataset = read_data(file) train_X, train_Y, test_X, test_Y = split_train_test(dataset) # 读取数据集 x_train, x_test = normailize(train_X, test_X) # 归一化 y_train = tf.keras.utils.to_categorical(train_Y - 1) y_test = tf.keras.utils.to_categorical(train_Y - 1) model = DnnModel() model.compile( optimizer=keras.optimizers.Adam(), loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(x_train, y_train, batch_size=32, epochs=100, validation_data=(x_test, y_test), verbose=1) # 模型训练 代码最后增加混淆矩阵
你想让我解释这段代码的意义吗?这段代码定义了一个神经网络模型,并对其进行训练。具体而言,它:
1. 读取数据集,通过调用read_data()函数读取数据集文件,并将数据集分为训练集和测试集。其中,分割比例为80%的数据为训练集,20%的数据为测试集。
2. 归一化数据,通过调用normalize()函数,对训练集和测试集进行归一化处理。
3. 对标签进行one-hot编码,使用to_categorical()函数将训练集和测试集的标签进行one-hot编码。
4. 定义DNN模型,使用Sequential()函数定义模型,包括4层,第一层32,第二层32,第三层32,第四层4分类。
5. 编译模型,使用compile()函数,对模型进行编译,其中使用Adam优化器,交叉熵损失函数,和准确率评估指标。
6. 模型训练,通过调用fit()函数,对模型进行训练,并记录训练过程中的loss和accuracy。
7. 最后增加混淆矩阵,通过调用confusion_matrix()函数,生成模型预测结果的混淆矩阵,用于评估模型性能。
x_train,x_test,y_train,y_test = train_test_split(data.iloc[:,:-1],data.iloc[:,-1], test_size=0.2, random_state=66) x_train = x_train.astype('float') y_train = y_train.astype('int') x_test = x_test.astype('float') y_test = y_test.astype('int') knn = KNeighborsClassifier(n_neighbors=10) knn.fit(x_train, y_train) y_pred = knn.predict(x_test) knn_cvscore = cross_val_score(knn,x_train,y_train,cv=5,scoring='accuracy') knn_cvmean = np.mean(knn_cvscore) print('Test score(accuracy)',knn.score(x_test,y_test)) knn_f1 = f1_score(y_test,y_pred,average='macro') print('F1 score:',knn_f1) knn_acc = accuracy_score(y_test,y_pred) print('Accuracy:',knn_acc)
这段代码是使用K近邻算法(K-Nearest Neighbors, KNN)对数据进行分类,并输出了测试集上的准确率(Test score),F1分数(F1 score),以及准确度(Accuracy)。同时,还使用了交叉验证(Cross Validation)来评估模型的性能,计算了模型在训练集上的平均准确率(cvmean)。其中,训练数据被随机分为训练集和测试集,训练集用于拟合模型,测试集用于评估模型的性能。而KNN算法则是一种基于实例的学习方法,它的核心思想是通过找到与新数据最相似的K个样本,来对新数据进行分类。在这段代码中,KNN算法的参数K被设置为10。
阅读全文