怎么构建Transformer Encoder
时间: 2023-12-13 16:09:54 浏览: 70
Transformer Encoder是由多个相同的Encoder层组成的,每个Encoder层包括self-attention和前馈神经网络两部分。下面是一个构建Transformer Encoder的示例代码:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
class TransformerEncoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_heads, dropout):
super(TransformerEncoder, self).__init__()
# 定义多层Encoder层
self.encoders = nn.ModuleList([EncoderLayer(input_size, hidden_size, num_heads, dropout) for _ in range(num_layers)])
def forward(self, x, mask):
for encoder in self.encoders:
x = encoder(x, mask)
return x
class EncoderLayer(nn.Module):
def __init__(self, input_size, hidden_size, num_heads, dropout):
super(EncoderLayer, self).__init__()
# self-attention部分
self.self_attn = MultiheadAttention(input_size, num_heads, dropout)
# 前馈神经网络部分
self.feedforward = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_size, input_size),
nn.Dropout(dropout)
)
# LayerNorm层
self.norm1 = nn.LayerNorm(input_size)
self.norm2 = nn.LayerNorm(input_size)
def forward(self, x, mask):
# self-attention部分
attn_output, _ = self.self_attn(x, x, x, mask)
x = self.norm1(x + attn_output)
# 前馈神经网络部分
ff_output = self.feedforward(x)
x = self.norm2(x + ff_output)
return x
class MultiheadAttention(nn.Module):
def __init__(self, input_size, num_heads, dropout):
super(MultiheadAttention, self).__init__()
# 定义多头注意力
self.num_heads = num_heads
self.attention = nn.MultiheadAttention(input_size, num_heads, dropout)
# LayerNorm层和Dropout层
self.norm = nn.LayerNorm(input_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask=None):
# 使用多头注意力
attn_output, _ = self.attention(x, x, x, mask)
# LayerNorm层和Dropout层
x = self.norm(x + self.dropout(attn_output))
return x
```
上述代码中,Transformer Encoder是由多个EncoderLayer组成的,每个EncoderLayer包括self-attention和前馈神经网络两部分。其中,Self-Attention部分使用了MultiheadAttention模型,前馈神经网络部分使用了全连接神经网络。每个EncoderLayer之间使用了LayerNorm层进行归一化处理。在EncoderLayer的forward函数中,分别对self-attention和前馈神经网络部分进行计算,然后将结果与输入x相加,再经过LayerNorm层和Dropout层输出。在TransformerEncoder的forward函数中,对每个EncoderLayer进行循环调用,输出最终的Encoder结果。
阅读全文