slope-one java实现
时间: 2023-10-04 12:08:54 浏览: 122
Slope-One算法是一种基于内存的协同过滤算法,用于推荐系统。它通过计算物品之间的平均差异来预测用户对物品的评分。以下是Slope-One算法的Java实现示例:
```java
import java.util.HashMap;
import java.util.Map;
public class SlopeOne {
private Map<String, Map<String, Double>> data;
private Map<String, Map<String, Integer>> freq;
public SlopeOne() {
data = new HashMap<String, Map<String, Double>>();
freq = new HashMap<String, Map<String, Integer>>();
}
public void addData(Map<String, Map<String, Double>> data) {
for (String user : data.keySet()) {
Map<String, Double> ratings = data.get(user);
for (String item : ratings.keySet()) {
addRating(user, item, ratings.get(item));
}
}
}
public void addRating(String user, String item, Double rating) {
if (!data.containsKey(user)) {
data.put(user, new HashMap<String, Double>());
freq.put(user, new HashMap<String, Integer>());
}
Map<String, Double> ratings = data.get(user);
Map<String, Integer> frequencies = freq.get(user);
if (!ratings.containsKey(item)) {
ratings.put(item, 0.0);
frequencies.put(item, 0);
}
ratings.put(item, ratings.get(item) + rating);
frequencies.put(item, frequencies.get(item) + 1);
}
public Map<String, Double> predict(Map<String, Double> userRatings) {
Map<String, Double> predictions = new HashMap<String, Double>();
Map<String, Integer> frequencies = new HashMap<String, Integer>();
for (String item : userRatings.keySet()) {
for (String diffItem : data.keySet()) {
if (!userRatings.containsKey(diffItem) && data.get(diffItem).containsKey(item)) {
double oldCount = frequencies.containsKey(diffItem) ? frequencies.get(diffItem) : 0.0;
double oldPrediction = predictions.containsKey(diffItem) ? predictions.get(diffItem) : 0.0;
double frequency = freq.get(diffItem).get(item);
double diff = data.get(diffItem).get(item);
frequencies.put(diffItem, (int) (oldCount + frequency));
predictions.put(diffItem, oldPrediction + frequency * (userRatings.get(item) + diff));
}
}
}
for (String item : predictions.keySet()) {
double frequency = frequencies.get(item);
double prediction = predictions.get(item);
predictions.put(item, prediction / frequency);
}
return predictions;
}
}
```
这里我们使用了Java的Map数据结构来存储物品之间的评分和频率信息。在addData方法中,我们将整个数据集添加到模型中。在addRating方法中,我们将用户对物品的评分添加到模型中。在predict方法中,我们使用用户已有的评分来预测用户对未评分物品的评分。
阅读全文