机器人路径规划D*算法代码
时间: 2023-11-26 09:03:32 浏览: 96
D*算法是一种增量式的路径规划算法,它可以在已知起点和终点的情况下,通过不断地更新地图信息,实现快速的路径规划。下面是一个简单的Python实现:
```python
import heapq
class Dstar:
def __init__(self, graph):
self.graph = graph
self.start = None
self.goal = None
self.U = []
self.km = 0
self.rhs = {}
self.g = {}
self.parent = {}
self.open_list = []
self.close_list = []
def initialize(self, start, goal):
self.start = start
self.goal = goal
self.rhs[self.goal] = 0
self.g[self.goal] = float('inf')
heapq.heappush(self.open_list, (self.calculate_key(self.goal), self.goal))
def calculate_key(self, u):
return min(self.g.get(u, float('inf')), self.rhs.get(u, float('inf'))) + self.heuristic(self.start, u) + self.km
def heuristic(self, u, v):
return self.graph.distance(u, v)
def update_vertex(self, u):
if u != self.goal:
self.rhs[u] = min([self.graph.distance(u, v) + self.g[v] for v in self.graph.neighbors(u)])
if u in self.U:
self.U.remove(u)
if self.g.get(u, float('inf')) != self.rhs.get(u, float('inf')):
heapq.heappush(self.U, (self.calculate_key(u), u))
def compute_shortest_path(self):
while self.open_list and (self.open_list[0][0] < self.calculate_key(self.start) or self.g.get(self.start, float('inf')) != self.rhs.get(self.start, float('inf'))):
k_old, u = heapq.heappop(self.open_list)
if k_old < self.calculate_key(u):
heapq.heappush(self.open_list, (self.calculate_key(u), u))
elif self.g.get(u, float('inf')) > self.rhs.get(u, float('inf')):
self.g[u] = self.rhs[u]
for v in self.graph.neighbors(u):
self.update_vertex(v)
else:
self.g[u] = float('inf')
self.update_vertex(u)
for v in self.graph.neighbors(u):
self.update_vertex(v)
def search(self, start, goal):
self.initialize(start, goal)
self.compute_shortest_path()
path = []
if self.g.get(self.start, float('inf')) == self.rhs.get(self.start, float('inf')):
u = self.start
while u != self.goal:
path.append(u)
min_cost = float('inf')
min_cost_node = None
for v in self.graph.neighbors(u):
cost = self.graph.distance(u, v) + self.g[v]
if cost < min_cost:
min_cost = cost
min_cost_node = v
u = min_cost_node
path.append(self.goal)
return path
```
这个实现中,我们使用了一个优先队列来存储需要更新的节点,每次从队列中取出最小的节点进行更新。同时,我们使用了一个rhs字典来存储每个节点的rhs值,g字典来存储每个节点的g值,parent字典来存储每个节点的父节点。在更新节点时,我们首先更新rhs值,然后根据g和rhs的值来判断是否需要将节点加入优先队列中。在计算路径时,我们从起点开始,每次选择一个邻居节点中代价最小的节点作为下一个节点,直到到达终点。
阅读全文