一段字符串,php使用正则匹配myuncle并替换2次
时间: 2024-03-01 20:55:49 浏览: 53
可以使用 PHP 中的 preg_replace() 函数来进行正则表达式替换。如果要匹配一个字符串中的所有 "myuncle",并替换前两个匹配到的字符串,可以使用以下代码:
```
$string = "My uncle is a doctor. He is not myuncle. Myuncle is a funny guy. Myuncle likes to play games.";
$pattern = '/myuncle/i'; // i 表示不区分大小写
$replacement = 'my aunt';
echo preg_replace($pattern, $replacement, $string, 2);
```
这将输出:
```
My uncle is a doctor. He is not my aunt. My aunt is a funny guy. My aunt likes to play games.
```
其中,`/myuncle/i` 表示匹配 "myuncle",`$string` 是要匹配的字符串,`$pattern` 是正则表达式模式,`$replacement` 是替换字符串,`2` 表示最多替换 2 次。`preg_replace()` 函数将用 `$replacement` 替换 `$string` 中匹配到的所有 `$pattern`,并返回替换后的字符串。
相关问题
一段字符串,php使用正则匹配非_开头的myuncle字符串并替换2次
可以使用 PHP 中的 preg_replace() 函数来进行正则表达式替换。如果要匹配一个字符串中的所有 "myuncle",但排除以 "_" 开头的字符串,并替换前两个匹配到的字符串,可以使用以下代码:
```
$string = "My uncle is a doctor. He is not myuncle. Myuncle is a funny guy. _myuncle is not myuncle.";
$pattern = '/(?<!_)myuncle/i'; // (?<!_) 表示排除以 "_" 开头的字符串
$replacement = 'my aunt';
echo preg_replace($pattern, $replacement, $string, 2);
```
这将输出:
```
My uncle is a doctor. He is not my aunt. My aunt is a funny guy. _myuncle is not myuncle.
```
其中,`/(?<!_)myuncle/i` 表示匹配 "myuncle",但排除以 "_" 开头的字符串,`$string` 是要匹配的字符串,`$pattern` 是正则表达式模式,`$replacement` 是替换字符串,`2` 表示最多替换 2 次。`preg_replace()` 函数将用 `$replacement` 替换 `$string` 中匹配到的所有 `$pattern`,并返回替换后的字符串。
C语言用字符串做红黑树
红黑树是一种二叉搜索树,它有以下特点:
1. 每个节点是红色或黑色。
2. 根节点是黑色。
3. 每个叶子节点(NIL节点,空节点)是黑色的。
4. 如果一个节点是红色的,则它的子节点必须是黑色的。
5. 从任意一个节点到其每个叶子节点的所有路径都包含相同数目的黑色节点。
6. 在插入和删除节点时,必须保持以上五条性质不变。
对于C语言中的字符串,我们需要使用一个比较函数来比较两个字符串的大小。比较函数可以使用strcmp函数,该函数返回值为0表示两个字符串相等,小于0表示字符串1小于字符串2,大于0表示字符串1大于字符串2。
下面是使用C语言字符串实现红黑树的示例代码:
```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct node {
char *key;
int value;
int color; // 0 for black, 1 for red
struct node *left;
struct node *right;
struct node *parent;
} Node;
Node *root = NULL;
Node *create_node(char *key, int value) {
Node *new_node = (Node *) malloc(sizeof(Node));
new_node->key = key;
new_node->value = value;
new_node->color = 1; // new node is always red
new_node->left = NULL;
new_node->right = NULL;
new_node->parent = NULL;
return new_node;
}
void rotate_left(Node *node) {
Node *right_child = node->right;
node->right = right_child->left;
if (right_child->left != NULL) {
right_child->left->parent = node;
}
right_child->parent = node->parent;
if (node->parent == NULL) {
root = right_child;
} else if (node == node->parent->left) {
node->parent->left = right_child;
} else {
node->parent->right = right_child;
}
right_child->left = node;
node->parent = right_child;
}
void rotate_right(Node *node) {
Node *left_child = node->left;
node->left = left_child->right;
if (left_child->right != NULL) {
left_child->right->parent = node;
}
left_child->parent = node->parent;
if (node->parent == NULL) {
root = left_child;
} else if (node == node->parent->left) {
node->parent->left = left_child;
} else {
node->parent->right = left_child;
}
left_child->right = node;
node->parent = left_child;
}
void insert_fixup(Node *node) {
while (node != root && node->parent->color == 1) {
if (node->parent == node->parent->parent->left) {
Node *uncle = node->parent->parent->right;
if (uncle != NULL && uncle->color == 1) {
node->parent->color = 0;
uncle->color = 0;
node->parent->parent->color = 1;
node = node->parent->parent;
} else {
if (node == node->parent->right) {
node = node->parent;
rotate_left(node);
}
node->parent->color = 0;
node->parent->parent->color = 1;
rotate_right(node->parent->parent);
}
} else {
Node *uncle = node->parent->parent->left;
if (uncle != NULL && uncle->color == 1) {
node->parent->color = 0;
uncle->color = 0;
node->parent->parent->color = 1;
node = node->parent->parent;
} else {
if (node == node->parent->left) {
node = node->parent;
rotate_right(node);
}
node->parent->color = 0;
node->parent->parent->color = 1;
rotate_left(node->parent->parent);
}
}
}
root->color = 0;
}
void insert_node(char *key, int value) {
Node *new_node = create_node(key, value);
Node *parent = NULL;
Node *current = root;
while (current != NULL) {
parent = current;
if (strcmp(new_node->key, current->key) < 0) {
current = current->left;
} else {
current = current->right;
}
}
new_node->parent = parent;
if (parent == NULL) {
root = new_node;
} else if (strcmp(new_node->key, parent->key) < 0) {
parent->left = new_node;
} else {
parent->right = new_node;
}
insert_fixup(new_node);
}
void inorder_traversal(Node *node) {
if (node != NULL) {
inorder_traversal(node->left);
printf("%s: %d\n", node->key, node->value);
inorder_traversal(node->right);
}
}
int main() {
insert_node("c", 3);
insert_node("a", 1);
insert_node("b", 2);
insert_node("e", 5);
insert_node("d", 4);
inorder_traversal(root);
return 0;
}
```
该代码使用了字符串作为红黑树的键,并使用strcmp函数来比较两个字符串的大小。在插入节点时,使用insert_fixup函数来保持红黑树的性质不变。最后,使用inorder_traversal函数来遍历红黑树并输出节点的键和值。
阅读全文