python用SR-Tree实现符号回归的代码
时间: 2024-05-11 21:14:55 浏览: 79
对于符号回归问题,SR-Tree的代码实现如下:
```python
import numpy as np
from scipy.spatial.distance import cdist
class Node:
def __init__(self, data=None, bounds=None, children=None, isleaf=True):
self.data = data or []
self.bounds = bounds
self.children = children or []
self.isleaf = isleaf
class SR_Tree:
def __init__(self, data, labels, thres=1, maxdepth=5):
self.data = data
self.labels = labels
self.thres = thres
self.maxdepth = maxdepth
self.root = self.build_tree(self.data, self.labels, depth=0)
def build_tree(self, data, labels, depth):
if len(data) <= self.thres or depth >= self.maxdepth:
return Node(data, bounds=self.get_bounds(data), isleaf=True)
else:
n = Node(bounds=self.get_bounds(data), isleaf=False)
children = self.split_data(data, labels)
for child_data, child_labels in children:
child_node = self.build_tree(child_data, child_labels, depth+1)
n.children.append(child_node)
return n
def split_data(self, data, labels):
n = len(labels)
dim = data.shape[1]
k = np.random.randint(dim)
pivot = np.median(data[:, k])
left = []
right = []
for i in range(n):
if data[i, k] < pivot:
left.append((data[i], labels[i]))
else:
right.append((data[i], labels[i]))
return [np.array([d for d, _ in left]), np.array([l for _, l in left])], \
[np.array([d for d, _ in right]), np.array([l for _, l in right])]
def query(self, x):
node = self.root
while not node.isleaf:
dists = [self.get_dist(x, child.bounds) for child in node.children]
idx = np.argmin(dists)
node = node.children[idx]
return np.mean(node.data[:, -1])
def get_dist(self, x, bounds):
if x.ndim == 1:
x = x.reshape(1, -1)
dist = 0.0
for i in range(x.shape[0]):
for j in range(x.shape[1]):
if x[i, j] < bounds[j, 0]:
dist += (bounds[j, 0] - x[i, j]) ** 2
elif x[i, j] > bounds[j, 1]:
dist += (x[i, j] - bounds[j, 1]) ** 2
return dist
def get_bounds(self, data):
return np.array([[np.min(data[:, j]), np.max(data[:, j])] for j in range(data.shape[1])])
def generate_data(n=1000):
x = np.random.uniform(-10, 10, (n, 2))
y = 0.5 * x[:, 0] ** 2 - 0.3 * x[:, 1] ** 2 + 2 * x[:, 0] - 3 * x[:, 1] + 5 + np.random.normal(0, 0.5, n)
return np.hstack((x, y.reshape(-1, 1)))
if __name__ == '__main__':
data = generate_data()
sr_tree = SR_Tree(data[:, :-1], data[:, -1], thres=50, maxdepth=10)
x = np.array([-3, 5])
y = sr_tree.query(x)
print('Result:', y)
```
在这个代码实现中,我们将符号回归问题的数据和标签作为SR-Tree的输入,然后构建SR-Tree来进行查询。在SR-Tree的构建过程中,我们按照随机选择轴的策略将数据集分成两个子集,然后递归地构建SR-Tree。在查询时,我们从根节点开始遍历树,根据查询点和每个节点的边界计算距离,并移动到最近的子节点,直到达到叶节点为止,然后返回该叶节点中数据的均值作为预测结果。
在这个实现中,我们使用了numpy和scipy库来进行计算和距离计算。为了生成测试数据,我们定义了一个简单的二次函数,并添加了随机噪声。最后,我们使用SR-Tree来进行查询,以测试其性能。
阅读全文