python实现彩色图像超分辨率算法
时间: 2023-07-26 10:13:13 浏览: 138
红外和可见光图像融合,红外和可见光图像融合目的Python实现源码.zip
彩色图像超分辨率可以通过使用深度学习模型来实现。以下是一个使用Python和PyTorch实现的超分辨率算法的示例代码:
```python
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
# 定义超分辨率模型
class SuperResolutionModel(nn.Module):
def __init__(self, upscale_factor):
super(SuperResolutionModel, self).__init__()
self.upscale_factor = upscale_factor
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=9, padding=4),
nn.ReLU(inplace=True),
nn.Conv2d(64, 32, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(32, 3 * (upscale_factor ** 2), kernel_size=5, padding=2),
nn.PixelShuffle(upscale_factor)
)
def forward(self, x):
x = self.features(x)
return x
# 定义数据集和数据预处理
class ImageDataset(Dataset):
def __init__(self, file_list, upscale_factor):
self.file_list = file_list
self.transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
self.upscale_factor = upscale_factor
def __len__(self):
return len(self.file_list)
def __getitem__(self, idx):
image = Image.open(self.file_list[idx])
lr_image = self.transforms(image)
hr_width, hr_height = lr_image.size[0] * self.upscale_factor, lr_image.size[1] * self.upscale_factor
hr_image = image.resize((hr_width, hr_height))
hr_image = self.transforms(hr_image)
return lr_image, hr_image
# 训练模型
def train_model(model, data_loader, criterion, optimizer, num_epochs):
for epoch in range(num_epochs):
running_loss = 0.0
for inputs, targets in data_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(data_loader.dataset)
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, epoch_loss))
# 测试模型
def test_model(model, data_loader):
psnr = 0.0
for inputs, targets in data_loader:
outputs = model(inputs)
mse_loss = nn.MSELoss()(outputs, targets)
psnr += 10 * torch.log10(1 / mse_loss)
avg_psnr = psnr / len(data_loader.dataset)
print('Average PSNR: {:.2f} dB'.format(avg_psnr))
# 训练和测试数据集路径
train_file_list = ['image1.jpg', 'image2.jpg', 'image3.jpg', ...]
test_file_list = ['image4.jpg', 'image5.jpg', 'image6.jpg', ...]
# 定义超参数
batch_size = 16
num_epochs = 10
learning_rate = 0.001
upscale_factor = 2
# 定义数据集和数据加载器
train_dataset = ImageDataset(train_file_list, upscale_factor)
test_dataset = ImageDataset(test_file_list, upscale_factor)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)
# 初始化模型、损失函数和优化器
model = SuperResolutionModel(upscale_factor)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
train_model(model, train_loader, criterion, optimizer, num_epochs)
# 测试模型
test_model(model, test_loader)
```
这段代码实现了一个基于深度学习的彩色图像超分辨率算法,通过训练数据集和测试数据集来评估模型的性能,并输出平均PSNR值作为评价指标。需要注意的是,这只是一个简单的示例代码,实际应用中需要根据具体情况进行调整和优化。
阅读全文