pytorch lstm-cnn预测模型
时间: 2023-06-30 10:16:46 浏览: 173
nvm-lstm-forecast-mc测试demo
好的,下面是在PyTorch环境下搭建LSTM-CNN预测模型的一般步骤:
1.导入所需库和模块
```
import torch
import torch.nn as nn
```
2.定义LSTM-CNN模型
```
class LSTM_CNN(nn.Module):
def __init__(self, num_classes=2):
super(LSTM_CNN, self).__init__()
self.num_classes = num_classes
# 定义CNN层
self.cnn = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
# 定义LSTM层
self.lstm = nn.LSTM(input_size=32 * 7 * 7, hidden_size=128, num_layers=1, batch_first=True)
# 定义全连接层
self.fc = nn.Linear(128, num_classes)
def forward(self, x):
# CNN层
x = self.cnn(x)
# 展开成一维向量
x = x.view(x.size(0), -1)
# LSTM层
x, _ = self.lstm(x.unsqueeze(1))
x = x[:, -1, :]
# 全连接层
x = self.fc(x)
return x
```
3.实例化模型
```
model = LSTM_CNN(num_classes=2)
```
4.加载预训练模型
```
checkpoint = torch.load('path/to/trained/model.pt')
model.load_state_dict(checkpoint['model_state_dict'])
```
5.对输入数据进行预处理
```
# 假设输入数据为一张灰度图像,大小为28x28
input_data = torch.randn(1, 1, 28, 28)
```
6.进行模型预测
```
with torch.no_grad():
# 将模型设置为评估模式
model.eval()
# 将输入数据传入模型进行预测
outputs = model(input_data)
_, predicted = torch.max(outputs.data, 1)
# 输出预测结果
if predicted.item() == 0:
print('Input data is class 0')
else:
print('Input data is class 1')
```
以上就是在PyTorch环境下搭建LSTM-CNN预测模型的一般步骤。当然,具体的实现方法和参数设置还需要根据具体的问题进行调整和优化。
阅读全文