AES128_ECB_encrypt函数
时间: 2023-08-03 10:04:14 浏览: 190
下面是一个AES128_ECB_encrypt函数的示例代码,用于对输入的明文进行加密:
```c
#include <stdint.h>
#define Nb 4
#define Nk 4
#define Nr 10
static void SubBytes(uint8_t *state);
static void ShiftRows(uint8_t *state);
static void MixColumns(uint8_t *state);
static void AddRoundKey(uint8_t *state, uint8_t *round_key);
static void KeyExpansion(uint8_t *key, uint8_t *round_key);
static void Cipher(uint8_t *input, uint8_t *output, uint8_t *round_key);
void AES128_ECB_encrypt(uint8_t *input, uint8_t *key, uint8_t *output) {
uint8_t round_key[176];
KeyExpansion(key, round_key);
Cipher(input, output, round_key);
}
static uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static void SubBytes(uint8_t *state) {
for (int i = 0; i < Nb * 4; i++) {
state[i] = sbox[state[i]];
}
}
static void ShiftRows(uint8_t *state) {
uint8_t tmp[Nb * 4];
for (int i = 0; i < Nb * 4; i++) {
tmp[i] = state[i];
}
for (int i = 0; i < Nb; i++) {
for (int j = 0; j < 4; j++) {
state[i * 4 + j] = tmp[(i + j) % Nb * 4 + j];
}
}
}
static uint8_t gf_mul(uint8_t a, uint8_t b) {
uint8_t p = 0;
for (int i = 0; i < 8; i++) {
if (b & 1) {
p ^= a;
}
uint8_t hi_bit = a & 0x80;
a <<= 1;
if (hi_bit) {
a ^= 0x1b;
}
b >>= 1;
}
return p;
}
static void MixColumns(uint8_t *state) {
uint8_t tmp[Nb * 4];
for (int i = 0; i < Nb * 4; i++) {
tmp[i] = state[i];
}
for (int i = 0; i < Nb; i++) {
state[4 * i] = gf_mul(0x02, tmp[4 * i]) ^ gf_mul(0x03, tmp[4 * i + 1]) ^
tmp[4 * i + 2] ^ tmp[4 * i + 3];
state[4 * i + 1] = tmp[4 * i] ^ gf_mul(0x02, tmp[4 * i + 1]) ^
gf_mul(0x03, tmp[4 * i + 2]) ^ tmp[4 * i + 3];
state[4 * i + 2] = tmp[4 * i] ^ tmp[4 * i + 1] ^
gf_mul(0x02, tmp[4 * i + 2]) ^ gf_mul(0x03, tmp[4 * i + 3]);
state[4 * i + 3] = gf_mul(0x03, tmp[4 * i]) ^ tmp[4 * i + 1] ^
tmp[4 * i + 2] ^ gf_mul(0x02, tmp[4 * i + 3]);
}
}
static void AddRoundKey(uint8_t *state, uint8_t *round_key) {
for (int i = 0; i < Nb * 4; i++) {
state[i] ^= round_key[i];
}
}
static void KeyExpansion(uint8_t *key, uint8_t *round_key) {
uint32_t w[Nb * (Nr + 1)];
for (int i = 0; i < Nk; i++) {
w[i] = (key[4 * i] << 24) | (key[4 * i + 1] << 16) |
(key[4 * i + 2] << 8) | key[4 * i + 3];
}
for (int i = Nk; i < Nb * (Nr + 1); i++) {
uint32_t temp = w[i - 1];
if (i % Nk == 0) {
temp = (sbox[temp & 0xff] << 24) | (sbox[(temp >> 8) & 0xff] << 16) |
(sbox[(temp >> 16) & 0xff] << 8) | sbox[(temp >> 24) & 0xff];
temp ^= (uint32_t)(rcon[i / Nk] << 24);
} else if (Nk > 6 && i % Nk == 4) {
temp = (sbox[temp & 0xff] << 24) | (sbox[(temp >> 8) & 0xff] << 16) |
(sbox[(temp >> 16) & 0xff] << 8) | sbox[(temp >> 24) & 0xff];
}
w[i] = w[i - Nk] ^ temp;
}
for (int i = 0; i < Nb * (Nr + 1); i++) {
round_key[4 * i] = (w[i] >> 24) & 0xff;
round_key[4 * i + 1] = (w[i] >> 16) & 0xff;
round_key[4 * i + 2] = (w[i] >> 8) & 0xff;
round_key[4 * i + 3] = w[i] & 0xff;
}
}
static void Cipher(uint8_t *input, uint8_t *output, uint8_t *round_key) {
uint8_t state[Nb * 4];
for (int i = 0; i < Nb * 4; i++) {
state[i] = input[i];
}
AddRoundKey(state, round_key);
for (int round = 1; round < Nr; round++) {
SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, round_key + round * Nb * 4);
}
SubBytes(state);
ShiftRows(state);
AddRoundKey(state, round_key + Nr * Nb * 4);
for (int i = 0; i < Nb * 4; i++) {
output[i] = state[i];
}
}
static uint8_t rcon[11] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c
};
```
该函数包含了AES128加密算法的核心实现。在函数内部,通过调用SubBytes、ShiftRows、MixColumns和AddRoundKey等辅助函数,对输入的明文进行加密处理。需要注意的是,该函数中使用了一个名为KeyExpansion的函数,用于生成扩展密钥。在实际应用中,密钥的扩展过程需要提前完成,并将扩展密钥作为参数传递给加密函数。
阅读全文