yolov7主干网络具体代码
时间: 2023-06-30 11:15:56 浏览: 266
以下是YOLOv7主干网络的具体代码(使用PyTorch实现):
```python
import torch.nn as nn
import torch.nn.functional as F
class CSPBlock(nn.Module):
def __init__(self, in_channels, out_channels, num_blocks, split=False):
super(CSPBlock, self).__init__()
self.split = split
self.block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 3, padding=1, groups=out_channels, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
self.skip = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
self.blocks = nn.Sequential(
*[nn.Sequential(
nn.Conv2d(out_channels, out_channels, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
self.block,
) for _ in range(num_blocks)]
)
def forward(self, x):
y = self.skip(x)
x = self.block(x)
x = self.blocks(x)
x = torch.cat([x, y], dim=1)
return x if self.split else F.interpolate(x, scale_factor=2)
class CSPDarknet53(nn.Module):
def __init__(self, num_classes=1000):
super(CSPDarknet53, self).__init__()
self.stem = nn.Sequential(
nn.Conv2d(3, 32, 3, padding=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
CSPBlock(64, 64, num_blocks=1),
nn.Conv2d(64, 128, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
CSPBlock(128, 128, num_blocks=2),
nn.Conv2d(128, 256, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
CSPBlock(256, 256, num_blocks=8),
nn.Conv2d(256, 512, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
CSPBlock(512, 512, num_blocks=8),
nn.Conv2d(512, 1024, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True),
CSPBlock(1024, 1024, num_blocks=4, split=True),
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.stem(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
其中,`CSPBlock`表示CSP块,`CSPDarknet53`表示CSPDarknet53主干网络。在`CSPDarknet53`中,采用了一系列卷积、归一化和激活操作,以及多个CSP块来提取特征。最后,通过全局平均池化和全连接层将特征映射到目标类别。
阅读全文