一维卷积cnn-lstm pytorch预测刀具磨损量模型代码
时间: 2023-11-09 13:07:55 浏览: 281
以下是一个简单的一维卷积CNN-LSTM PyTorch模型代码,用于预测刀具磨损量。这个模型由一维卷积层和LSTM层组成,用于处理时间序列数据。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
class ConvLSTM(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size, num_layers, dropout):
super(ConvLSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.conv = nn.Conv1d(input_size, input_size, kernel_size, padding=(kernel_size - 1) // 2)
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, dropout=dropout, batch_first=True)
self.linear = nn.Linear(hidden_size, 1)
def forward(self, x):
x = self.conv(x)
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.linear(out[:, -1, :])
return out
# Hyperparameters
input_size = 1
hidden_size = 64
kernel_size = 3
num_layers = 2
dropout = 0.2
lr = 0.001
num_epochs = 100
# Model, Loss and Optimizer
model = ConvLSTM(input_size, hidden_size, kernel_size, num_layers, dropout).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
# Train the model
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print the loss
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# Test the model
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(inputs)
# Calculate the loss
loss = criterion(outputs, labels)
total += labels.size(0)
correct += (abs(outputs - labels) <= 0.1).sum().item()
print('Test Accuracy of the model on the test data: {} %'.format(100 * correct / total))
```
在训练之前,你需要准备你的数据,并将其转换为PyTorch张量格式。你可以使用PyTorch的DataLoader类来批量加载数据。在上面的代码中,我们使用均方误差损失函数和Adam优化器来训练模型。最后,我们在测试集上评估了模型的准确性。
阅读全文