SIM900A引脚说明

时间: 2023-11-09 14:09:03 浏览: 37
SIM900A是一款基于GSM/GPRS技术的模块,它具有以下引脚: 1. VBAT:模块电源输入,建议电压3.5V~4.2V。 2. GND:模块地线。 3. RXD:串口接收引脚,连接主控板的TXD引脚。 4. TXD:串口发送引脚,连接主控板的RXD引脚。 5. RST:复位引脚,低电平有效,建议接外部上拉电阻。 6. RI:振铃指示引脚,高电平表示有来电。 7. DTR:数据终端就绪引脚,高电平表示模块准备就绪。 8. DCD:数据载波检测引脚,高电平表示模块正在通信。 9. CTS:清除发送引脚,用于流控制。 10. RTS:请求发送引脚,用于流控制。 需要注意的是,不同SIM900A模块厂家的引脚布局可能会有所不同,具体以厂家提供的数据手册为准。
相关问题

sim900a拨打电话代码

SIM900A是一款常用的GSM/GPRS模块,可以用于拨打电话、发送短信等功能。下面是一个简单的SIM900A拨打电话的代码示例: ```c++ #include <SoftwareSerial.h> SoftwareSerial sim900a(10, 11); // 设置软串口引脚 void setup() { Serial.begin(9600); // 初始化串口通信 sim900a.begin(9600); // 初始化SIM900A模块 delay(2000); // 等待模块初始化完成 Serial.println("SIM900A Ready"); } void loop() { if (Serial.available()) { sim900a.write(Serial.read()); // 将串口输入的数据发送给SIM900A模块 } if (sim900a.available()) { Serial.write(sim900a.read()); // 将SIM900A模块返回的数据发送给串口 } } ``` 这段代码使用了SoftwareSerial库来实现与SIM900A模块的通信。在setup函数中,我们初始化了串口通信和SIM900A模块,并等待2秒钟以确保模块初始化完成。在loop函数中,我们通过串口将输入的数据发送给SIM900A模块,并将模块返回的数据发送给串口。 请注意,这只是一个简单的示例代码,实际使用时可能需要根据具体情况进行修改和完善。另外,还需要确保SIM900A模块已正确连接到Arduino,并且正确设置了引脚。

sim900A 的stm32代码

以下是一个简单的 sim900A 模块使用 STM32 的代码示例,可以作为参考: ```c #include "stm32f10x.h" #include "stdio.h" #include "string.h" #define SIM900A_USART USART1 #define SIM900A_TX_PIN GPIO_Pin_9 #define SIM900A_RX_PIN GPIO_Pin_10 #define SIM900A_USART_GPIO GPIOA #define SIM900A_USART_GPIO_CLK RCC_APB2Periph_GPIOA #define SIM900A_PWR_PIN GPIO_Pin_11 #define SIM900A_RST_PIN GPIO_Pin_12 #define SIM900A_CTRL_GPIO GPIOB #define SIM900A_CTRL_GPIO_CLK RCC_APB2Periph_GPIOB #define SIM900A_BUFFER_SIZE 1024 #define SIM900A_TIMEOUT 1000 static uint8_t sim900a_buffer[SIM900A_BUFFER_SIZE]; static uint16_t sim900a_buffer_index = 0; static uint8_t sim900a_rx_flag = 0; void sim900a_init(void) { USART_InitTypeDef USART_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | SIM900A_USART_GPIO_CLK | SIM900A_CTRL_GPIO_CLK, ENABLE); GPIO_InitStructure.GPIO_Pin = SIM900A_TX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(SIM900A_USART_GPIO, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = SIM900A_RX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(SIM900A_USART_GPIO, &GPIO_InitStructure); USART_InitStructure.USART_BaudRate = 9600; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(SIM900A_USART, &USART_InitStructure); USART_Cmd(SIM900A_USART, ENABLE); GPIO_InitStructure.GPIO_Pin = SIM900A_PWR_PIN | SIM900A_RST_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(SIM900A_CTRL_GPIO, &GPIO_InitStructure); GPIO_SetBits(SIM900A_CTRL_GPIO, SIM900A_PWR_PIN); GPIO_SetBits(SIM900A_CTRL_GPIO, SIM900A_RST_PIN); } void sim900a_send_byte(uint8_t data) { USART_SendData(SIM900A_USART, data); while (USART_GetFlagStatus(SIM900A_USART, USART_FLAG_TXE) == RESET); } void sim900a_send_string(char *str) { while (*str) { sim900a_send_byte(*str++); } } uint8_t sim900a_receive_byte(void) { while (USART_GetFlagStatus(SIM900A_USART, USART_FLAG_RXNE) == RESET); return USART_ReceiveData(SIM900A_USART); } void sim900a_receive_data(void) { uint8_t data; while (USART_GetFlagStatus(SIM900A_USART, USART_FLAG_RXNE) != RESET) { data = sim900a_receive_byte(); if (sim900a_buffer_index < SIM900A_BUFFER_SIZE) { sim900a_buffer[sim900a_buffer_index++] = data; if (data == '\n' || data == '\r') { sim900a_rx_flag = 1; } } else { sim900a_buffer_index = 0; } } } uint8_t sim900a_send_command(const char *command, const char *response, uint16_t timeout) { uint16_t i; sim900a_buffer_index = 0; sim900a_rx_flag = 0; sim900a_send_string((char *)command); sim900a_send_string("\r\n"); for (i = 0; i < timeout; i++) { sim900a_receive_data(); if (sim900a_rx_flag) { if (strstr((char *)sim900a_buffer, response)) { return 1; } sim900a_rx_flag = 0; sim900a_buffer_index = 0; } delay_ms(1); } return 0; } int main(void) { sim900a_init(); while (1) { if (sim900a_send_command("AT", "OK", SIM900A_TIMEOUT)) { printf("SIM900A is ready.\n"); } else { printf("SIM900A is not responding.\n"); } delay_ms(1000); } } ``` 需要注意的是,以上代码仅作为示例,实际使用时需要根据具体的硬件连接和需求进行修改。同时,使用 sim900A 模块需要注意其电源、复位等控制引脚的使用方法。

相关推荐

最新推荐

recommend-type

multisim仿真的TL494 BOOST 升压电路

multisim仿真电路图 multisim仿真的TL494 BOOST 升压电路,实现15V输入,转24V输出; TL494 BOOST 拓扑设计。
recommend-type

H3_AP202404081630040449_1.pdf

电子元件 电子行业 行业分析 数据分析 数据报告 行业报告
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通