vivadohlsdsp_FPGA硬件加速学习vivado hls-----------------卷积加速

时间: 2023-09-08 21:08:11 浏览: 70
对于使用 Vivado HLS 进行 FPGA 硬件加速的卷积加速问题,我们可以通过以下步骤实现: 1. 将卷积操作转换为 C/C++ 代码,以便在 Vivado HLS 中进行进一步的优化。 2. 在 Vivado HLS 中使用 pragma 指令进行优化,例如 unroll、pipeline、array_partition 等。 3. 将优化后的 C/C++ 代码传递给 Vivado 编译器进行综合和实现。 4. 在 Vivado 中使用 Block Design 工具将实现的 IP 核集成到系统设计中。 5. 在 SDK 中编写驱动程序,并将其运行在 FPGA 上进行测试。 需要注意的是,卷积操作的优化涉及到许多细节,如数据重用、缓存优化、流水线优化等。因此,在使用 Vivado HLS 进行卷积加速时,需要深入了解硬件加速的原理和 Vivado HLS 工具的使用技巧。
相关问题

vivado hls实现卷积

Vivado HLS是一种高级综合工具,可以将C/C++代码转换为硬件描述语言,从而实现在FPGA上的加速。在卷积神经网络中,卷积层是计算密集型的部分,因此使用Vivado HLS对其进行加速可以提高网络的运行速度。具体实现过程包括以下几个步骤: 1. 使用C/C++编写卷积层的计算代码。 2. 在Vivado HLS中创建IP核,并将计算代码导入到IP核中。 3. 在Vivado中打通数据通路,将IP核与其他网络层连接起来。 4. 在SDK中测试IP核的性能和正确性。 需要注意的是,在使用Vivado HLS实现卷积时,需要根据卷积图片的大小调整SDK端代码中SIZE的值。同时,2D卷积是对图像的一种处理,可以通过串口查看返回的结果值来验证计算的正确性。

HLS 加速卷积神经网络

HLS(High-Level Synthesis)是一种将高级语言代码转换为硬件描述语言代码的技术,可以用于加速卷积神经网络(CNN)。通过使用HLS,可以将CNN的卷积操作实现为IP核,并在FPGA开发板上进行验证。 具体来说,HLS可以将CNN的卷积操作转化为硬件逻辑,以实现加速。在HLS中,可以使用16位定点数进行量化,并将输入特征图和权重转换为16位定点数进行乘加操作。通过对代码进行优化和调整,可以进一步提高卷积操作的效率和性能。 在进行HLS加速卷积神经网络之前,需要进行一些准备工作,例如学习HLS的基础知识,参考相关文档(例如Xilinx官方文档ug871-vivado-high-level-synthesis-tutorial以及ug902-vivado-high-level-synthesis)等。此外,在编写HLS代码时,需要定义顶层函数(TOP Function),该函数用于调用实现了卷积操作的IP核,并将输入和输出作为参数传递。 在使用HLS加速卷积神经网络时,还需要注意内存数据的读写和缓存操作。在向内存写入数据后,需要刷新Cache以将数据刷到内存中,而在从内存读取数据时,如果使用了DMA等方式的数据传输,则需要使相应区域的Cache无效,并重新读取数据。

相关推荐

最新推荐

recommend-type

基于stm32f4系列单片机,ad7606的8通道16位的同步ADC例程。.zip

基于stm32f4系列单片机,ad7606的8通道16位的同步ADC例程。
recommend-type

六数码问题..._lan.zip

六数码问题..._lan
recommend-type

ASP.NET旅游信息管理系统 asp.net(c#)+sql.zip

ASP.NET旅游信息管理系统 asp.net(c#)+sql
recommend-type

ListView 中的item随意拖动.zip

ListView 中的item随意拖动.zip
recommend-type

图形化界面采用Easyx编写,实现对哈夫曼树的显示操作

【作品名称】:图形化界面采用Easyx编写,实现对哈夫曼树的显示操作 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】: 数据结构课程设计(哈夫曼编码译码器) 本程序语言为c语言,内容包括: 哈夫曼编码 显示哈夫曼树 哈夫曼译码 图形化界面采用Easyx编写,实现对哈夫曼树的显示操作。
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。