我需要你帮我优化代码,尽可能的来降低运算量,减少for循环的使用,多采用其他库,代码如下: import random filename = 'supercu.lmp' file_object = open(filename,'r') lines = file_object.readlines() num_layers = 150 num_atom_a_layer = 20000 idx_gradient = 0.1 num_random = [] for idx_layer in range(1,num_layers+1): num_cu_float = pow(idx_layer/num_layers,idx_gradient)*num_atom_a_layer num_cu = int(num_cu_float) list_random = random.sample(range((idx_layer-1)*num_atom_a_layer,idx_layer*num_atom_a_layer),num_cu) num_random = num_random + list_random num_random.sort() for index in range (len(lines)): strT = lines[index] strL = strT.split() if int(strL[0]) in num_random: strT = strT[:14]+'2'+strT[15:] lines[index] = strT file_object.close strTT = "".join(lines) file_object = open(filename,'w') file_object.write(strTT) file_object.close
时间: 2024-04-26 21:20:59 浏览: 149
可以尝试使用NumPy库来代替for循环,因为NumPy在处理大量数据时比Python原生的for循环更高效。修改后的代码如下:
import random
import numpy as np
filename = 'supercu.lmp'
lines = np.loadtxt(filename)
num_layers = 150
num_atom_a_layer = 20000
idx_gradient = 0.1
num_random = []
for idx_layer in range(1,num_layers+1):
num_cu_float = pow(idx_layer/num_layers,idx_gradient)*num_atom_a_layer
num_cu = int(num_cu_float)
list_random = random.sample(range((idx_layer-1)*num_atom_a_layer,idx_layer*num_atom_a_layer),num_cu)
num_random += list_random
num_random.sort()
lines[num_random, 0] = 2
np.savetxt(filename, lines, fmt='%d')
这个代码使用NumPy的loadtxt函数来读取文件,将其转换为NumPy数组。然后使用NumPy的切片和索引来选择要修改的元素,并用NumPy的savetxt函数将修改后的数组保存回文件。这个代码的运行速度应该比原来的代码更快,同时使用了更少的for循环。
阅读全文