基于stm32音频降噪程序
时间: 2023-11-14 12:07:33 浏览: 537
在基于STM32的音频降噪程序中,可以使用数字信号处理(DSP)技术来实现降噪功能。以下是一些可能的步骤:
1. 采集音频信号: 使用STM32内置的ADC模块来采集音频信号。在采集时,可以使用可变增益放大器(VGA)来调整信号的强度,以适应不同的环境和噪声水平。
2. FFT变换: 对采集到的音频信号进行快速傅里叶变换(FFT)。FFT可以将时域信号转换为频域信号,从而方便后续的降噪处理。
3. 噪声估计: 通过FFT得到的频域信号,可以估计出噪声的频率分布。可以使用自适应滤波器(如LMS算法)来估计噪声的功率谱密度。
4. 降噪处理: 根据噪声估计结果,可以使用数字滤波器来去除噪声。例如,可以使用Wiener滤波器或卡尔曼滤波器来消除噪声。
5. 反FFT变换: 对降噪后的频域信号进行反傅里叶变换(IFFT),将信号转换回时域信号。
6. 输出音频信号: 使用STM32内置的DAC模块来输出处理后的音频信号。可以使用可变增益放大器来调整输出信号的强度,以适应不同的环境和听者。
需要注意的是,不同的降噪算法和滤波器可能适用于不同的噪声类型和噪声水平。因此,在实际应用中,需要根据具体的场景和需求来选择合适的降噪算法和参数。
相关问题
stm32音频降噪程序
STM32音频降噪程序主要是通过数字信号处理的方式,对音频信号进行滤波处理,降低噪声的干扰,提高音频的质量。下面是一个简单的STM32音频降噪程序示例:
1. 初始化ADC和DMA模块,配置ADC的采样率和分辨率,设置DMA传输模式。
2. 在中断服务函数中,将DMA传输的音频数据进行FFT变换,得到音频频谱。
3. 对频谱进行滤波处理,去除高频噪声,并将滤波后的频谱进行IFFT反变换,得到降噪后的音频数据。
4. 将降噪后的音频数据通过DAC输出,完成音频降噪处理。
以下是一个基于STM32F4的音频降噪程序示例,供参考:
```c
#include "stm32f4xx.h"
#include "arm_math.h"
#define FFT_SIZE 1024
#define SAMPLE_RATE 48000
#define BLOCK_SIZE 512
uint16_t micData[BLOCK_SIZE] = {0};
uint16_t outData[BLOCK_SIZE] = {0};
float32_t fftInput[FFT_SIZE] = {0};
float32_t fftOutput[FFT_SIZE] = {0};
float32_t ifftInput[FFT_SIZE] = {0};
float32_t ifftOutput[FFT_SIZE] = {0};
float32_t fftMag[FFT_SIZE/2] = {0};
arm_rfft_fast_instance_f32 fftInstance;
arm_rfft_fast_instance_f32 ifftInstance;
void ADC_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1,ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2,ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
GPIO_Init(GPIOC, &GPIO_InitStructure);
DMA_InitStructure.DMA_Channel = DMA_Channel_0;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)micData;
DMA_InitStructure.DMA_BufferSize = BLOCK_SIZE;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA2_Stream0, &DMA_InitStructure);
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = 1;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_3Cycles);
ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE);
ADC_DMACmd(ADC1, ENABLE);
ADC_Cmd(ADC1, ENABLE);
DMA_Cmd(DMA2_Stream0, ENABLE);
}
void DAC_Config(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
DAC_InitTypeDef DAC_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
GPIO_Init(GPIOA, &GPIO_InitStructure);
DAC_InitStructure.DAC_Trigger = DAC_Trigger_None;
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
DAC_Init(DAC_Channel_1, &DAC_InitStructure);
DAC_Cmd(DAC_Channel_1, ENABLE);
}
void FFT_Config(void)
{
arm_rfft_fast_init_f32(&fftInstance, FFT_SIZE);
arm_rfft_fast_init_f32(&ifftInstance, FFT_SIZE);
}
void FFT_Process(void)
{
uint16_t i,j;
for(i=0,j=0;i<BLOCK_SIZE;i++)
{
fftInput[j++] = micData[i];
fftInput[j++] = 0;
}
arm_rfft_fast_f32(&fftInstance, fftInput, fftOutput, 0);
arm_cmplx_mag_f32(fftOutput, fftMag, FFT_SIZE/2);
for(i=0;i<FFT_SIZE/2;i++)
{
if(fftMag[i] > 1000)
{
fftOutput[i*2] = 0;
fftOutput[i*2+1] = 0;
}
}
arm_rfft_fast_f32(&ifftInstance, fftOutput, ifftInput, 1);
for(i=0,j=0;i<BLOCK_SIZE;i++)
{
outData[i] = ifftOutput[j++];
}
}
int main(void)
{
ADC_Config();
DAC_Config();
FFT_Config();
while (1)
{
FFT_Process();
DAC_SetChannel1Data(DAC_Align_12b_R, outData[0]);
}
}
```
以上代码仅供参考,具体的音频降噪算法和滤波器设计需要根据实际情况进行优化。
stm32F1音频降噪程序
STM32F1系列的音频降噪程序可以采用数字信号处理算法来实现。常用的降噪算法有基于自适应滤波的LMS算法、基于频域处理的FFT算法等。以下是一个基于FFT算法的音频降噪程序示例:
```c
#include "math.h"
#define FFT_SIZE 1024
float fft_input[FFT_SIZE];
float fft_output[FFT_SIZE];
float fft_mag[FFT_SIZE];
float fft_mag_prev[FFT_SIZE];
float noise_floor = 0.1f;
void fft_mag_calc(void)
{
int i;
for(i = 0; i < FFT_SIZE; i++)
{
fft_mag[i] = sqrtf(fft_output[i] * fft_output[i] + fft_output[i + FFT_SIZE/2] * fft_output[i + FFT_SIZE/2]);
if(fft_mag[i] < noise_floor)
{
fft_mag[i] = fft_mag_prev[i];
}
fft_mag_prev[i] = fft_mag[i];
}
}
void noise_reduction(void)
{
int i;
for(i = 0; i < FFT_SIZE; i++)
{
if(fft_mag[i] > noise_floor)
{
fft_output[i] = fft_output[i] * noise_floor / fft_mag[i];
fft_output[i + FFT_SIZE/2] = fft_output[i + FFT_SIZE/2] * noise_floor / fft_mag[i];
}
}
}
void audio_processing(void)
{
// 采集音频数据
// ...
// 填充FFT输入缓冲区
int i;
for(i = 0; i < FFT_SIZE; i++)
{
fft_input[i] = audio_data[i];
}
// 执行FFT变换
arm_cfft_f32(&arm_cfft_sR_f32_len1024, fft_input, 0, 1);
arm_cmplx_mag_f32(fft_input, fft_output, FFT_SIZE);
// 计算FFT幅值
fft_mag_calc();
// 处理噪声
noise_reduction();
// 执行IFFT变换
arm_cfft_f32(&arm_cfft_sR_f32_len1024, fft_output, 1, 1);
// 输出音频数据
// ...
}
```
以上代码中,`fft_input`和`fft_output`分别表示FFT输入和输出缓冲区,`fft_mag`和`fft_mag_prev`分别表示当前和前一次的FFT幅值,`noise_floor`表示噪声幅值的阈值。
在`audio_processing`函数中,首先采集音频数据并填充到FFT输入缓冲区中,然后执行FFT变换得到FFT输出,再计算FFT幅值。接着,根据阈值对FFT输出进行处理,最后执行IFFT变换得到降噪后的音频数据。
阅读全文