用小波变换优化一下canny算法编写python代码
时间: 2024-06-09 16:12:37 浏览: 124
好的,关于用小波变换优化Canny算法的Python代码,以下是我给您提供的代码:
```python
import cv2
import pywt
import numpy as np
def canny_edge_detection(img, sigma=0.33):
# 小波变换进行图像去噪
coeffs = pywt.dwtn(img, 'haar')
cA = coeffs['aaa']
cH = coeffs['aha']
cV = coeffs['ava']
cD = coeffs['ada']
threshold = sigma * np.mean(cA.ravel())
cA = pywt.threshold(cA, threshold, mode='soft')
cH = pywt.threshold(cH, threshold, mode='soft')
cV = pywt.threshold(cV, threshold, mode='soft')
cD = pywt.threshold(cD, threshold, mode='soft')
coeffs['aaa'] = cA
coeffs['aha'] = cH
coeffs['ava'] = cV
coeffs['ada'] = cD
denoised_img = pywt.idwtn(coeffs, 'haar')
# Canny算法进行边缘检测
v = np.median(denoised_img)
lower = int(max(0, (1.0 - sigma) * v))
upper = int(min(255, (1.0 + sigma) * v))
edges = cv2.Canny(denoised_img, lower, upper)
return edges
```
您可以将需要进行边缘检测的图像传入该函数,函数会返回一个经过小波变换去噪和Canny算法边缘检测后的图像。该代码中sigma参数控制Canny算法中阈值的上下限,最终的阈值值为图像的中位数加上/减去sigma倍的图像中位数差。明白了吗?
阅读全文