用pytorch写一个决策树回归
时间: 2023-02-24 10:07:17 浏览: 62
下面是一个使用 PyTorch 实现的决策树回归的示例代码:
```
import torch
import numpy as np
class DecisionTreeRegressor:
def __init__(self, max_depth=3):
self.max_depth = max_depth
self.left = None
self.right = None
self.split_idx = None
self.split_val = None
self.y_val = None
def fit(self, X, y):
if self.max_depth == 0 or len(y) < 2:
self.y_val = y.mean()
return
best_split_idx, best_split_val = self._best_split(X, y)
if best_split_idx is None:
self.y_val = y.mean()
return
X_left, X_right, y_left, y_right = self._split_data(X, y, best_split_idx, best_split_val)
self.split_idx = best_split_idx
self.split_val = best_split_val
self.left = DecisionTreeRegressor(self.max_depth-1)
self.left.fit(X_left, y_left)
self.right = DecisionTreeRegressor(self.max_depth-1)
self.right.fit(X_right, y_right)
def predict(self, X):
if self.y_val is not None:
return torch.tensor([self.y_val]*len(X))
else:
return torch.where(X[:, self.split_idx] <= self.split_val,
self.left.predict(X),
self.right.predict(X))
def _best_split(self, X, y):
best_idx, best_val = None, None
best_loss = float("inf")
for i in range(X.shape[1]):
unique_vals = np.unique(X[:, i])
for val in unique_vals:
X_left, X_right, y_left, y_right = self._split_data(X, y, i, val)
loss = np.mean((y_left - y_left.mean())**2) + np.mean((y_right - y_right.mean())**2)
if loss < best_loss:
best_loss = loss
best_idx = i
best_val = val
return best_idx, best_val
def _split_data(self, X, y, idx, val):
idx_left = X[:, idx] <= val
idx_right = ~idx_left
return X[idx_left], X[idx_right], y[idx_left], y[idx_right]
```
使用方法类似于其他机
阅读全文