dbscan聚类算法python代码
时间: 2023-09-02 20:08:39 浏览: 40
DBSCAN是一种密度聚类算法,可以通过Python代码实现。以下是一个使用Python实现DBSCAN算法的示例代码:
```python
from sklearn.cluster import DBSCAN
from sklearn import datasets
import matplotlib.pyplot as plt
# 导入数据集
iris = datasets.load_iris()
X = iris.data
# 构建DBSCAN聚类模型
dbscan = DBSCAN(eps=0.4, min_samples=5)
dbscan.fit(X)
# 打印聚类标签
print("聚类标签: ", dbscan.labels_)
# 绘制聚类结果
colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
for i in range(len(X)):
plt.scatter(X[i][0], X[i][1], c=colors[dbscan.labels_[i]])
plt.show()
```
在这个示例中,我们使用Scikit-learn库中的DBSCAN模块进行聚类。首先,我们从Scikit-learn库中导入DBSCAN和数据集。然后,我们设置聚类模型的超参数,包括eps和min_samples。接下来,我们使用模型拟合数据,并打印每个点的聚类标签。最后,我们使用Matplotlib库绘制数据点和聚类结果。
相关问题
DBSCAN聚类算法 python代码
好的,以下是一个完整的 DBSCAN 聚类算法的 Python 代码实现:
```python
import numpy as np
from sklearn.neighbors import NearestNeighbors
class DBSCAN:
def __init__(self, eps=0.5, min_samples=5):
self.eps = eps
self.min_samples = min_samples
def fit(self, X):
n_samples = X.shape[0]
labels = np.zeros(n_samples)
visited = np.zeros(n_samples, dtype=bool)
core_indices = self._get_core_indices(X)
cluster_label = 0
for i in range(n_samples):
if visited[i]:
continue
if i in core_indices:
cluster_label += 1
self._expand_cluster(X, visited, labels, core_indices, i, cluster_label)
else:
labels[i] = -1
return labels
def _expand_cluster(self, X, visited, labels, core_indices, index, cluster_label):
visited[index] = True
labels[index] = cluster_label
neighbors = self._get_neighbors(X, index)
if len(neighbors) < self.min_samples:
return
for neighbor_index in neighbors:
if not visited[neighbor_index]:
visited[neighbor_index] = True
neighbor_label = labels[neighbor_index]
if neighbor_index in core_indices and neighbor_label == 0:
self._expand_cluster(X, visited, labels, core_indices, neighbor_index, cluster_label)
else:
labels[neighbor_index] = cluster_label
def _get_neighbors(self, X, index):
nbrs = NearestNeighbors(n_neighbors=self.min_samples, metric='euclidean').fit(X)
distances, indices = nbrs.kneighbors([X[index]])
return indices[0].tolist()
def _get_core_indices(self, X):
nbrs = NearestNeighbors(n_neighbors=self.min_samples, metric='euclidean').fit(X)
distances, indices = nbrs.kneighbors(X)
core_indices = []
for i in range(len(X)):
if len(distances[i]) >= self.min_samples:
core_indices.append(i)
return core_indices
```
其中,`eps` 和 `min_samples` 分别表示 DBSCAN 算法的两个超参数,即邻域半径和最小样本数。在 `fit` 方法中,首先获取所有核心点的索引,然后遍历所有未访问过的样本点,如果该点是核心点,则将其标记为一个新的聚类,并通过 BFS(广度优先搜索)遍历所有与该点密度可达的样本点,并将它们分配到该聚类中。最终返回所有样本点的聚类标签。
阅读全文