51单片机spi的MISO不回

时间: 2023-11-24 17:40:00 浏览: 159
SPI的MISO引脚是主机读取从机的状态或者数据的通道。如果MISO不回应,可能是以下几个原因:1. 引脚连接错误,检查MISO引脚是否正确连接到从机;2. 从机未正确响应,确认从机的工作状态和配置是否正确;3. 通信速度设置错误,检查主机和从机之间的通信速度设置是否一致。请检查以上可能的原因,以确定为什么MISO不回应。
相关问题

51单片机spi通信

51单片机(也称为8051)可以通过SPI(Serial Peripheral Interface)进行通信。SPI是一种同步的串行通信协议,常用于单片机与外部设备之间的数据交换。 在51单片机中,通常有两种方式来实现SPI通信:硬件SPI和软件SPI。 硬件SPI是通过专门的硬件模块来实现SPI通信,具有较高的传输速度和较低的CPU占用率。硬件SPI的配置和使用方法会因不同的单片机型号而有所差异,通常需要设置相关寄存器来配置SPI的时钟频率、数据位数、主从模式等。同时,还需要使用特定的引脚作为SPI的时钟线(SCK)、数据输入线(MISO)、数据输出线(MOSI)和片选线(SS)。 软件SPI是通过软件编写的方式来模拟SPI通信,相比硬件SPI,它的实现相对简单但速度较慢。软件SPI的实现需要通过GPIO口模拟SPI的时钟和数据线,通过编写相关的代码来实现SPI通信的时序和数据传输。 无论是硬件SPI还是软件SPI,它们的基本原理都是通过主设备(通常是单片机)和从设备之间的时钟同步以及数据的串行传输来实现通信。主设备控制时钟线,从设备在时钟的边沿上读取或发送数据。 希望以上对SPI通信的介绍能对你有所帮助。如果你有具体的问题或需要更详细的资料,请随时提问。

51单片机spi读写sd扇区代码

以下是51单片机通过SPI读写SD卡扇区的代码: ```c #include <reg52.h> #include <intrins.h> #define uchar unsigned char #define uint unsigned int // 定义SD卡命令 #define CMD0 0x40 #define CMD8 0x48 #define CMD17 0x51 #define CMD24 0x58 #define CMD55 0x77 #define ACMD41 0x69 // 定义SD卡错误码 #define SD_OK 0x00 #define SD_IDLE_STATE 0x01 #define SD_CRC_ERROR 0x02 #define SD_DATA_ERROR 0x03 #define SD_CMD_ERROR 0x04 #define SD_TIMEOUT_ERROR 0x05 // 定义SD卡返回的数据标志 #define SD_DATA_TOKEN 0xFE // 定义SD卡SPI模式下的命令标志 #define SD_SPI_MODE 0x40 // 定义SD卡等待超时时间 #define SD_TIMEOUT 0xFF // 定义SD卡块大小 #define SD_BLOCK_SIZE 512 // 定义SPI时钟频率 #define SPI_CLOCK_FREQ 1000000UL // 定义SPI通信延时函数 #define SPI_DELAY() _nop_() // 定义SPI发送数据函数 void spi_send_byte(uchar dat) { uchar i; for(i = 0; i < 8; i++) { if(dat & 0x80) MOSI = 1; else MOSI = 0; dat <<= 1; SCK = 1; SPI_DELAY(); SCK = 0; SPI_DELAY(); } } // 定义SPI接收数据函数 uchar spi_receive_byte() { uchar i, dat = 0; for(i = 0; i < 8; i++) { SCK = 1; SPI_DELAY(); dat <<= 1; if(MISO) dat |= 0x01; SCK = 0; SPI_DELAY(); } return dat; } // 定义等待SD卡响应函数 uchar wait_sd_response() { uint wait_count = 0; uchar response = 0xFF; while(response == 0xFF && wait_count < SD_TIMEOUT) { response = spi_receive_byte(); wait_count++; } if(wait_count >= SD_TIMEOUT) return SD_TIMEOUT_ERROR; else return response; } // 定义发送SD卡命令函数 uchar send_sd_command(uchar cmd, uint arg, uchar crc) { uchar response; // 启动SD卡的SPI模式 CS = 0; spi_send_byte(SD_SPI_MODE | cmd); spi_send_byte(arg >> 24); spi_send_byte(arg >> 16); spi_send_byte(arg >> 8); spi_send_byte(arg); spi_send_byte(crc); // 等待SD卡响应 response = wait_sd_response(); // 关闭SD卡的SPI模式 CS = 1; return response; } // 定义初始化SD卡函数 uchar init_sd_card() { uint i, response; // 等待SD卡上电完成 for(i = 0; i < 10; i++) spi_send_byte(0xFF); // 发送CMD0命令,进入IDLE状态 response = send_sd_command(CMD0, 0, 0x95); if(response != SD_IDLE_STATE) return SD_CMD_ERROR; // 发送CMD8命令,检查SD卡是否支持高容量 response = send_sd_command(CMD8, 0x1AA, 0x87); if(response == SD_IDLE_STATE) { // SDv2卡,继续执行初始化 for(i = 0; i < 4; i++) response = spi_receive_byte(); if(response != 0xAA) return SD_CMD_ERROR; } else if(response == SD_CMD_ERROR) { // SDv1卡,继续执行初始化 } else return SD_CMD_ERROR; // 发送ACMD41命令,激活SD卡 while(1) { response = send_sd_command(CMD55, 0, 0); if(response != 0x01) return SD_CMD_ERROR; response = send_sd_command(ACMD41, 0x40000000, 0); if(response == 0) break; if(response != SD_IDLE_STATE) return SD_CMD_ERROR; } // 发送CMD16命令,设置SD卡块大小为512字节 response = send_sd_command(CMD16, SD_BLOCK_SIZE, 0); if(response != 0) return SD_CMD_ERROR; // 初始化完成 return SD_OK; } // 定义读取SD卡扇区函数 uchar read_sd_sector(uchar *buffer, uint sector) { uint i, response; // 发送CMD17命令,读取扇区数据 response = send_sd_command(CMD17, sector * SD_BLOCK_SIZE, 0); if(response != 0) return response; // 等待SD卡响应 response = wait_sd_response(); if(response != SD_DATA_TOKEN) return SD_DATA_ERROR; // 读取扇区数据 for(i = 0; i < SD_BLOCK_SIZE; i++) buffer[i] = spi_receive_byte(); // 读取CRC校验码 spi_receive_byte(); spi_receive_byte(); // 读取完成 return SD_OK; } // 定义写入SD卡扇区函数 uchar write_sd_sector(uchar *buffer, uint sector) { uint i, response; // 发送CMD24命令,写入扇区数据 response = send_sd_command(CMD24, sector * SD_BLOCK_SIZE, 0); if(response != 0) return response; // 发送数据标志 spi_send_byte(SD_DATA_TOKEN); // 发送扇区数据 for(i = 0; i < SD_BLOCK_SIZE; i++) spi_send_byte(buffer[i]); // 发送CRC校验码 spi_send_byte(0xFF); spi_send_byte(0xFF); // 等待SD卡响应 response = wait_sd_response(); if((response & 0x1F) != 0x05) return SD_DATA_ERROR; while(!spi_receive_byte()); // 写入完成 return SD_OK; } void main() { uchar buffer[SD_BLOCK_SIZE]; uint i; init_sd_card(); read_sd_sector(buffer, 0); for(i = 0; i < SD_BLOCK_SIZE; i++) putchar(buffer[i]); write_sd_sector(buffer, 1); while(1); } ``` 这是一个简单的读取SD卡第0个扇区数据并将其输出,然后将一个缓冲区中的数据写入SD卡第1个扇区的例子。在使用时,需要根据实际情况修改SD卡的SPI接口引脚、SPI时钟频率、SD卡块大小等参数。
阅读全文

相关推荐

最新推荐

recommend-type

基于51单片机的SD卡驱动程序以及相关资料

在电子设计领域,51单片机是一种广泛应用的微控制器,尤其在小型嵌入式系统中。本篇文章主要探讨了如何使用AT89C52 51单片机驱动SD卡,解决通信协议和电平匹配的问题,以便在电能监测及无功补偿数据采集系统中使用SD...
recommend-type

51单片机与SD卡的接口电路和程序

本文重点探讨了如何将51单片机(以AT89C52为例)与SD卡通过SPI接口进行通讯,以实现数据的读写。 首先,通讯模式的选择至关重要。SD卡提供了两种通讯协议:SD模式和SPI模式。SD模式需要带有SD卡控制器接口的MCU或...
recommend-type

基于JAVA+SpringBoot+MySQL的校园台球厅人员与设备管理系统设计与实现.docx

基于JAVA+SpringBoot+MySQL的校园台球厅人员与设备管理系统设计与实现.docx
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

PROTEUS符号定制指南:个性化元件创建与修改的全面攻略

![PROTEUS符号定制指南:个性化元件创建与修改的全面攻略](https://circuits-diy.com/wp-content/uploads/2020/05/74LS00-pinout.png) 参考资源链接:[Proteus电子元件符号大全:从二极管到场效应管](https://wenku.csdn.net/doc/1fahxsg8um?spm=1055.2635.3001.10343) # 1. PROTEUS符号定制基础知识 PROTEUS符号定制是电子工程设计中不可或缺的一环,它允许设计者创建和修改电路元件符号,以符合特定的设计需求。本章将为你提供关于PROTEUS符号