身份证识别模型训练源码
时间: 2023-09-07 13:17:14 浏览: 92
森锐身份证识别模块SDK全套源码
身份证识别模型的训练源码可以基于深度学习框架进行开发,以下是一个基于PyTorch的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from myDataset import MyDataset
# 定义网络结构
class IDCardNet(nn.Module):
def __init__(self):
super(IDCardNet, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(16)
self.relu1 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(32)
self.relu2 = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.relu3 = nn.ReLU(inplace=True)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 6 * 16, 128)
self.fc2 = nn.Linear(128, 2)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x = self.pool3(x)
x = x.view(-1, 64 * 6 * 16)
x = self.fc1(x)
x = self.fc2(x)
return x
# 数据预处理
data_transforms = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# 加载数据集
train_dataset = MyDataset('./data/train/', data_transforms)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
# 开始训练
net = IDCardNet()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
# 保存模型
torch.save(net.state_dict(), './idcard_model.pth')
```
其中,`MyDataset`是一个自定义的`torch.utils.data.Dataset`类,用于加载训练数据集,需要根据实际情况进行编写。在上述代码中,我们定义了一个简单的卷积神经网络用于身份证识别,使用交叉熵损失和Adam优化器进行训练,并将训练好的模型保存在`./idcard_model.pth`文件中。
阅读全文