pytroch中如何使用torch.nn.functional.accuracy
时间: 2023-04-03 17:02:37 浏览: 863
您可以使用torch.nn.functional.accuracy函数来计算分类问题的准确率。该函数需要两个参数:模型的输出和真实标签。您可以使用torch.max函数来获取模型输出的预测标签,然后将其与真实标签进行比较,最后计算准确率。以下是使用torch.nn.functional.accuracy函数的示例代码:
```
import torch
import torch.nn.functional as F
# 模型输出
outputs = torch.randn(10, 5)
# 真实标签
targets = torch.randint(5, (10,))
# 获取预测标签
preds = torch.argmax(outputs, dim=1)
# 计算准确率
acc = F.accuracy(preds, targets)
print(acc)
```
输出结果将是一个到1之间的浮点数,表示模型的准确率。
相关问题
import torch import torch.nn.functional as F import torch.optim as optim from torchvision import transforms from torchvision import datasets from torch.utils. data import DataI oader 补全代码
下面是一个基本的 PyTorch MNIST 数据集训练代码示例,包括数据加载、模型定义、优化器和损失函数的定义以及训练过程。
```
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
# 定义数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载数据集
train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
net = Net()
# 定义优化器和损失函数
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5)
criterion = nn.CrossEntropyLoss()
# 训练模型
def train(epoch):
net.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = net(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
net.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = net(data)
test_loss += criterion(output, target)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, 5):
train(epoch)
test()
```
这是一个简单的卷积神经网络模型,用于对 MNIST 手写数字进行分类。训练过程中使用了交叉熵损失函数和随机梯度下降优化器。
module 'torch.nn.functional' has no attribute 'accuracy'
这个错误可能是因为在PyTorch中没有名为accuracy的函数。如果您想计算准确率,请考虑使用其他方法,例如手动计算准确率或使用第三方库。以下是一个手动计算准确率的示例代码:
```python
def accuracy(output, target, topk=(1,)):
"""计算准确率"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
```
您可以将此函数添加到您的代码中,并使用此函数计算准确率。
阅读全文