写一段python程序,进行运动区域的检测和分割,并对视频帧进行增强,去掉行人影子的干扰
时间: 2024-05-16 10:18:09 浏览: 81
这是一个比较复杂的任务,需要使用计算机视觉领域的技术。以下是一个简单的示例程序,用于演示如何进行运动区域检测和分割,并进行视频增强。
首先,我们需要导入必要的库:
```python
import cv2
import numpy as np
```
然后,我们需要加载视频文件并获取第一帧图像:
```python
cap = cv2.VideoCapture('video.mp4')
ret, frame = cap.read()
```
接下来,我们需要对第一帧图像进行处理,以获取背景模型:
```python
bg_subtractor = cv2.createBackgroundSubtractorMOG2()
mask = bg_subtractor.apply(frame)
for i in range(30):
ret, frame = cap.read()
mask = bg_subtractor.apply(frame)
cv2.imshow('Background Model', mask)
cv2.waitKey(30)
cv2.destroyAllWindows()
```
在这里,我们使用了OpenCV的背景减法器MOG2来计算背景模型。我们将前30帧用于背景模型的计算,并将其显示在屏幕上。
接下来,我们将使用背景模型来检测和分割运动区域:
```python
while True:
ret, frame = cap.read()
if not ret:
break
mask = bg_subtractor.apply(frame)
mask = cv2.threshold(mask, 254, 255, cv2.THRESH_BINARY)[1]
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
if cv2.contourArea(c) < 500:
continue
x, y, w, h = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imshow('Motion Detection', frame)
cv2.waitKey(30)
cv2.destroyAllWindows()
```
在这里,我们使用背景减法器计算出的背景模型来获取前景掩码。然后,我们使用二值化操作将前景掩码转换为二进制图像,并使用cv2.findContours函数查找所有运动区域的轮廓。对于每个轮廓,我们计算其面积并检查是否大于500像素。如果是,则将其作为矩形框绘制在原始图像中。
最后,我们可以对原始图像进行增强,以去除行人影子的干扰:
```python
while True:
ret, frame = cap.read()
if not ret:
break
mask = bg_subtractor.apply(frame)
mask = cv2.threshold(mask, 254, 255, cv2.THRESH_BINARY)[1]
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
if cv2.contourArea(c) < 500:
continue
x, y, w, h = cv2.boundingRect(c)
roi = frame[y:y+h, x:x+w]
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
shadow_mask = cv2.threshold(v, 50, 255, cv2.THRESH_BINARY_INV)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
shadow_mask = cv2.erode(shadow_mask, kernel)
shadow_mask = cv2.dilate(shadow_mask, kernel)
v = cv2.bitwise_and(v, shadow_mask)
hsv = cv2.merge((h, s, v))
roi = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
frame[y:y+h, x:x+w] = roi
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imshow('Motion Detection and Enhancement', frame)
cv2.waitKey(30)
cv2.destroyAllWindows()
```
在这里,我们对每个运动区域进行了增强处理。我们首先提取出该区域,并将其转换为HSV颜色空间。然后,我们使用v通道来计算阴影掩码,并对其进行形态学操作。最后,我们使用阴影掩码来去除行人影子的干扰,并将处理后的区域合并回原始图像中。
完整的程序如下所示:
```python
import cv2
import numpy as np
cap = cv2.VideoCapture('video.mp4')
ret, frame = cap.read()
bg_subtractor = cv2.createBackgroundSubtractorMOG2()
mask = bg_subtractor.apply(frame)
for i in range(30):
ret, frame = cap.read()
mask = bg_subtractor.apply(frame)
cv2.imshow('Background Model', mask)
cv2.waitKey(30)
cv2.destroyAllWindows()
while True:
ret, frame = cap.read()
if not ret:
break
mask = bg_subtractor.apply(frame)
mask = cv2.threshold(mask, 254, 255, cv2.THRESH_BINARY)[1]
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
if cv2.contourArea(c) < 500:
continue
x, y, w, h = cv2.boundingRect(c)
roi = frame[y:y+h, x:x+w]
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
shadow_mask = cv2.threshold(v, 50, 255, cv2.THRESH_BINARY_INV)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
shadow_mask = cv2.erode(shadow_mask, kernel)
shadow_mask = cv2.dilate(shadow_mask, kernel)
v = cv2.bitwise_and(v, shadow_mask)
hsv = cv2.merge((h, s, v))
roi = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
frame[y:y+h, x:x+w] = roi
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imshow('Motion Detection and Enhancement', frame)
cv2.waitKey(30)
cv2.destroyAllWindows()
```
阅读全文