用pytorch写一个甲状腺图像二分类代码
时间: 2024-05-12 11:20:35 浏览: 93
这里给出一个简单的甲状腺图像二分类代码,使用PyTorch实现,具体实现细节可能需要根据具体数据集的特点进行调整。假设数据集包含两个文件夹,分别为train和test,其中每个文件夹下分别包含正样本和负样本,命名为“positive”和“negative”。
首先,需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms, datasets
```
然后,定义数据预处理和数据加载器:
```python
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_set = datasets.ImageFolder('train', transform=transform)
test_set = datasets.ImageFolder('test', transform=transform)
train_loader = DataLoader(train_set, batch_size=16, shuffle=True)
test_loader = DataLoader(test_set, batch_size=16, shuffle=True)
```
接下来,定义模型结构,这里使用ResNet18预训练模型:
```python
model = torch.hub.load('pytorch/vision:v0.9.0', 'resnet18', pretrained=True)
model.fc = nn.Linear(512, 2)
```
然后,定义损失函数和优化器:
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
接下来,训练模型:
```python
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9:
print('[%d, %5d] loss: %.3f' % (epoch+1, i+1, running_loss/10))
running_loss = 0.0
```
最后,测试模型:
```python
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
```
这样就完成了一个简单的甲状腺图像二分类代码。需要注意的是,这只是一个示例,实际应用中需要根据具体情况进行调整和优化。
阅读全文