使用PyTorch实现一个简单的卷积神经网络(CNN),用于识别手写数字(使用MNIST数据集)。
时间: 2024-09-14 19:11:40 浏览: 42
使用 PyTorch 构建一个卷积神经网络(CNN)来识别手写数字MNIST 数据集.docx
使用PyTorch实现一个简单的卷积神经网络(CNN)来识别手写数字(使用MNIST数据集)的基本步骤如下:
1. 导入必要的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
```
2. 定义一个卷积神经网络模型:
```python
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(7*7*64, 1024)
self.fc2 = nn.Linear(1024, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, 7*7*64)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
```
3. 准备数据:
```python
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1000, shuffle=False)
```
4. 初始化网络和优化器:
```python
model = SimpleCNN()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
```
5. 训练网络:
```python
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} ({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}')
```
6. 测试网络:
```python
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print(f'\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} ({100. * correct / len(test_loader.dataset):.0f}%)\n')
```
7. 运行训练和测试:
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(1, 10):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
```
以上代码展示了如何使用PyTorch搭建一个简单的CNN模型,并在MNIST数据集上进行训练和测试。请确保你的环境中已经安装了PyTorch和torchvision库,并且拥有一个可用的GPU(如果选择使用)。
阅读全文