4.RSA加密算法的C语言实现
时间: 2024-04-29 17:23:54 浏览: 119
以下是RSA加密算法的C语言实现:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#define MAX 10000
int gcd(int a, int b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
int prime(int n) {
int i, j;
int isPrime = 1;
for (i = 2; i <= sqrt(n); i++) {
if (n % i == 0) {
isPrime = 0;
break;
}
}
return isPrime;
}
int generate_primes(int *p, int *q) {
srand(time(NULL));
int n1 = rand() % MAX + 1;
int n2 = rand() % MAX + 1;
while (!prime(n1)) {
n1 = rand() % MAX + 1;
}
while (!prime(n2) || n1 == n2) {
n2 = rand() % MAX + 1;
}
*p = n1;
*q = n2;
return (*p) * (*q);
}
int generate_key(int *e, int *d, int phi) {
srand(time(NULL));
int k = 2;
int temp = phi;
while (gcd(k, temp) != 1) {
k = rand() % (phi - 2) + 2;
}
*e = k;
int i = 1;
while (1) {
if ((i * phi + 1) % k == 0) {
*d = (i * phi + 1) / k;
break;
}
i++;
}
return *e;
}
int power_mod(int a, int b, int m) {
int result = 1;
while (b > 0) {
if (b % 2 == 1) {
result = (result * a) % m;
}
a = (a * a) % m;
b = b / 2;
}
return result;
}
void encrypt(int *cipher, char *message, int len, int e, int n) {
int i;
for (i = 0; i < len; i++) {
cipher[i] = power_mod(message[i], e, n);
}
}
void decrypt(char *message, int *cipher, int len, int d, int n) {
int i;
for (i = 0; i < len; i++) {
message[i] = power_mod(cipher[i], d, n);
}
}
int main() {
int p, q;
int n = generate_primes(&p, &q);
int phi = (p - 1) * (q - 1);
int e, d;
generate_key(&e, &d, phi);
printf("p = %d\nq = %d\nn = %d\ne = %d\nd = %d\n", p, q, n, e, d);
char message[MAX];
printf("Enter message to encrypt: ");
scanf("%s", message);
int len = strlen(message);
int cipher[len];
encrypt(cipher, message, len, e, n);
printf("Encrypted message: ");
int i;
for (i = 0; i < len; i++) {
printf("%d ", cipher[i]);
}
printf("\n");
char decrypted[len];
decrypt(decrypted, cipher, len, d, n);
printf("Decrypted message: %s\n", decrypted);
return 0;
}
```
该程序实现了RSA加密算法的基本功能,包括生成素数、生成公钥和私钥、加密和解密消息。程序中使用了随机数生成器来生成素数和公钥,同时利用欧拉函数计算私钥。加密和解密过程使用了模幂运算,避免了对大数进行直接计算的问题。
阅读全文