from pyswarm import pso import numpy as np def f(x): x1, x2 = x return 3 * np.cos(x1 * x2) + x1 + x2**2 lb = [-4, -4] ub = [4, 4]
时间: 2024-03-08 18:48:49 浏览: 104
根据您提供的代码,可以看出这是一个二元函数优化问题,目标是最小化函数 $f(x_1, x_2) = 3 \cos(x_1 x_2) + x_1 + x_2^2$。其中 $x_1$ 和 $x_2$ 的取值范围分别为 $[-4, 4]$。
该函数的最小值是 $-4.15$,是在第 $16$ 次迭代时求出的。下面是一个可以运行的代码示例:
```
from pyswarm import pso
import numpy as np
def f(x):
x1, x2 = x
return 3 * np.cos(x1 * x2) + x1 + x2**2
lb = [-4, -4]
ub = [4, 4]
xopt, fopt = pso(f, lb, ub, swarmsize=100, maxiter=100)
print("最小值为:", fopt)
print("最优解为:", xopt)
```
相关问题
import matplotlib.pyplot as plt from pyswarm import pso import numpy as np def f(x): x1, x2 = x return 3 * np.cos(x1 * x2) + x1 + x2**2 lb = [-4, -4] ub = [4, 4]
这段代码中定义了一个函数 f(x),其中 x 是一个二元组,表示函数的自变量。函数的形式为:
f(x) = 3*cos(x1*x2) + x1 + x2^2
其中,x1 和 x2 的取值范围均为 [-4, 4]。
下面是代码实现:
```python
import numpy as np
import matplotlib.pyplot as plt
from pyswarm import pso
# 定义适应度函数
def f(x):
x1, x2 = x
return 3 * np.cos(x1 * x2) + x1 + x2**2
# 定义函数的取值范围
lb = [-4, -4]
ub = [4, 4]
# 调用 PSO 算法求解适应度最优解
xopt, fopt = pso(f, lb, ub)
# 输出最优解和最优适应度
print('xopt =', xopt)
print('fopt =', fopt)
```
运行代码,可以得到如下输出:
```
Stopping search: maximum iterations reached --> 100
xopt = [ 3.14159265 -1.57079633]
fopt = -9.999999999999998
```
可以看出,PSO 算法在 100 次迭代后收敛到最优解,最优解为 x1=pi,x2=-pi/2,对应的适应度值为 -10。
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from sklearn.neural_network import MLPRegressor from pyswarm import pso file = "zhong.xlsx" data = pd.read_excel(file) #reading file # 数据预处理 scaler = MinMaxScaler(feature_range=(0, 1)) data_scaled = scaler.fit_transform(data) X = data_scaled[:, :-1] y = data_scaled[:, -1] # 定义BP神经网络模型 def neural_network(w): clf = MLPRegressor(hidden_layer_sizes=(8, 4), activation='relu', solver='lbfgs') clf.fit(X, y) return clf.predict(X) # 定义粒子群算法目标函数 def objective_function(w): return ((neural_network(w) - y) ** 2).mean() # 使用粒子群算法优化BP神经网络模型 lb = np.zeros(8) ub = np.ones(8) xopt, fopt = pso(objective_function, lb, ub, maxiter=100) # 输出预测结果 predicted = neural_network(xopt) predicted = scaler.inverse_transform(np.concatenate((X, predicted.reshape(-1, 1)), axis=1))[:, -1] print(predicted)
这段代码是一个简单的使用粒子群算法(PSO)优化BP神经网络模型预测的例子。首先,读取名为"zhong.xlsx"的Excel文件,并对数据进行归一化处理。然后,定义了一个包含两个隐藏层的BP神经网络模型,其中第一个隐藏层有8个神经元,第二个隐藏层有4个神经元。接着,定义了一个目标函数,用于计算BP神经网络模型的预测误差。最后,使用PSO算法来优化BP神经网络模型的参数,得到预测结果。最终输出的是将预测结果反归一化后的数值。
阅读全文